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Abstract

Abstract nonlinear operator equations of the type

f(u) ≡ Lu + Nu = 0, u ∈ D(L)

is considered, where L is a densely defined closed linear operator from a
Banach space X to an another Banach space Y and N a densely defined
nonlinear operator from X to Y . A method is presented for numerical
verification and inclusion of solutions for this equation.

1 Introduction

In this paper, we are concerned with abstract nonlinear operator equations of
the type

f(u) ≡ Lu + Nu = 0, u ∈ D(L) (1)

where L is a densely defined closed linear operator from a Banach space X to Y ,
and N a densely defined nonlinear operator from X to Y .This type of equations
occur in a variety of situations in both pure and applied sciences. Eq. (1) is
sometimes called a coincidence equation because one wants to find a point u
for which the images under L and -N coincide. The purpose of the paper is
to present a method for numerical verification and inclusion of solutions for
Eq. (1). In the following, the domain of the definition of L, D(L), and that for
N,D(N) is assumed to be Banach spaces satisfying D(L) ⊂ D(N). For the sake
of simplicity we will denote D = D(L) and B = D(N). The norms of D, B, X,
and Y will be denoted by ‖ · ‖D, ‖ · ‖B , ‖ · ‖X , and ‖ · ‖Y , respectively.

In 1965, Urabe[13] has presented a method for numerical verification and
inclusion of solutions for Eq. (1) for the case of L = d/dt. Then, he[14],[12]
and his coresearchers[9],[10], [11] presented various results of numerical verifica-
tions for periodic and quasi-periodic solutions of ordinary differential equations.
Urabe’s method is based on his convergence theorem of a simplified Newton
method for operator equations on suitable functional spaces. From the numer-
ical analytic point of view, to apply Urabe’s theorem, to obtain an estimate
for the operator norm of the inverse of a certain linear operator becomes a key
point. Urabe has presented a method in which this can be obtained by nu-
merically obtaining a certain fundamental matrix. In 1972, Bouc[1] has shown
that this kind of estimate can be accomplished without numerical integration
by using functional analytic techniques for the case of L = d/dt. This paper
is an extension of Urabe-Bouc’s approach. That is, in this paper, we will treat
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the case in which L is a general closed operator L. By this, not only ordi-
nary differential equations but also partial differential equations can be treated.
Since mathematically rigorous bounds is required in obtaining such estimate, we
have developed a rational arithmetic library. In this system using a continued
fraction expansion of rational numbers, rounding errors during the numerical
computations are completely taken into account.

Historically, several authors has presented different ways to use computers in
proving the existence of solutions for nonlinear operator equations. Kantrovich[5]
has presented a convergence theorem of Newton method on functional spaces
and treated various kinds of functional equations. Kedem[6] has utilized this
Newton-Kantrovich theorem to numerically prove the existence of solutions for
certain two-point boundary problems. Cesari[2] presented also a method based
on the alternative method. Collatz[3] and have presented methods based on
the monotonicity or inverse-positivity. More recently, Kaucher-Miranker[4] pre-
sented a method using bases expansions. Nakao[7] has presented an infinite
dimensional interval method and treated not only ordinary differential equa-
tions but also partial differential equations of various types. Plum[8] has also
presented a method based on eigenvalue estimations. Our method of estimating
the operator norm of a certain linear operator is completely different from these
method.

2 Graph Norm Estimate

We consider here the graph norm introduced by L in D(L):

‖u‖L = ‖u‖X + ‖Lu‖Y for u ∈ D(L)

Since L is closed, D(L) becomes a Banach space with respect to the norm ‖u‖L.
We denote this Banach space DL. We assume that N is continuously Fréchet
differentiable as a map from DL to Y . For u ∈ DL, we assume that the first
derivative of N,DuN(u) = S(u), can be extended to a bounded linear map
from X to Y . In order to numerically verify existence of solutions for Eq. (1),
we introduce now a numerical framework. Let E and F be finite dimensional
subspaces of DL and Y , respectively, with dim E = dim F . Let P and Q be
projections from DL to E and Y to F , respectively. We assume that

‖u− Pu‖X ≤ c‖Lu‖Y for ∀u ∈ DL (2)

QLu = QLPu for ∀ u ∈ DL (3)

and
‖Q‖L(Y,Y ) ≤ 1 (4)

hold. Here, c is a constant independent of u. It should be noted here that for
a choice of P , we usually suppose a situation in which the constant c can be
chosen arbitrary small provided that dim E becomes sufficiently large.

Let {e1, e2, · · · , em} and {v1, v2, · · · , vm} be bases of E and F , respectively.
Then any element e ∈ E and v ∈ F can be represented as

e =
m∑

n=0

cn(e)en (5)
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and

v =
m∑

n=0

dn(v)vn, (6)

respectively. Here, cn(e)’s and dn(v)’s are suitable linear functionals. Thus
maps Am : E → Em and Bm : F → Fm can be defined as

Ame = (c1(e), c2(e), · · · , cm(e))t (7)

and
Bmv = (d1(v), d2(v), · · · , dm(v))t, (8)

respectively. Here, the superscript t denotes the transposition of vectors,

Em = {(c1(e), c2(e), · · · , cm(e))t|e ∈ E}

and
Fm = {(d1(v), d2(v), · · · , dm(v))t|v ∈ F}.

For c = (c1, c2, · · · , cm)t and d = (d1, d2, · · · , dm)t, define

‖c‖Em = ‖
m∑

n=1

cnen‖X (9)

and

‖d‖Fm
= ‖

m∑
n=1

dnvn‖Y . (10)

Now, let ũ ∈ E be an approximate solution of Eq. (1). Then, a linear
transformation J : Em → Fm can be defined as

JAmPy = Bm{Q(LPy + S(ũ))Py}. (11)

Since Em and Fm are finite dimensional vector spaces, J can be considered as
a matrix. If det J 6= 0, we have

‖Py‖Y ≤ M‖Q(LPy + S(ũ))Py‖X . (12)

Here, M is a constant such that

‖J−1‖L(Fm,Em) ≤ M. (13)

Then, one of our main results can be stated as follows:

Theorem 1 Assume that det J 6= 0. Let K and M be constants such that
‖S(ũ)‖L(X,Y ) ≤ K and ‖J−1‖L(Fm,Em) ≤ M . If cK(1 + MK) < 1, then the
map G(ũ) = L+S(ũ) : DL → Y satisfies the following estimate for any y ∈ DL:

‖y‖L ≤ C‖G(ũ)y‖Y , (14)

where

C =
(1 + c)(1 + MK) + M

1− cK(1 + MK)
.
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Now we define a residual
r = ‖f(ũ)‖Y .

Moreover, we assume that
‖u‖B ≤ d‖u‖L

holds for any u ∈ DL, where d is constant independent of u. Let Up = B(ũ, p)
be a closed ball in DL centered at ũ with a radius p. Here, if we assume that
S(u) = DuN(u) : DL → Y is locally Lipschitz continuous:

‖S(u)− S(v)‖L(DL,Y ) = aU‖u− v‖L for u, v ∈ U ⊂ DL.

Then we have

Theorem 2 We assume that G(ũ) : DL → Y has an inverse and cK(1 +
MK) < 1 holds. Let a = aUp

. If p satisfies

1. 2Cr ≤ p
and

2. aCp < 1,

then there exists a solution u∗ of Eq. (1) uniquely in Up and satisfies

‖u∗ − ũ‖L ≤ 2Cr.

Then, we also have
‖u∗ − ũ‖B ≤ 2dCr.

3 Proof of Theorem 1

Put
G(ũ)x = Lx + S(ũ)x, G(ũ) : DL → Y. (15)

For x ∈ DL, we have

‖x‖X ≤ ‖x− Px‖X + ‖Px‖X

≤ c‖Lx‖Y + ‖Px‖X .

(16)

From the definition of (15), we have

‖Lx‖Y ≤ ‖G(ũ)x‖Y + ‖S(ũ)x‖Y

≤ ‖G(ũ)x‖Y + K‖x− Px + Px‖X

≤ ‖G(ũ)x‖Y + Kc‖Lx‖Y + K‖Px‖X . (17)

Moreover from (15) and (3), we have

QG(ũ)x = QLx + QS(ũ)(x− Px + Px) = QLPx + QS(ũ)(x− Px + Px).

Here, if we put

s = QLPx + QS(ũ)Px = Q[G(ũ)x− S(ũ)(x− Px)],
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using (4) we have
‖s‖Y ≤ ‖G(ũ)x‖Y + Kc‖Lx‖Y . (18)

Substituting the relation
‖Px‖X ≤ M‖s‖Y (19)

and (18) into (17), we have

‖Lx‖Y ≤ ‖G(ũ)x‖Y + Kc‖Lx‖Y + MK‖s‖
≤ ‖G(ũ)x‖Y + Kc‖Lx‖Y + MK(‖G(ũ)x‖Y + Kc‖Lx‖Y )
= (1 + MK)‖G(ũ)x‖Y + Kc(1 + MK)‖Lx‖Y .

Thus we have
‖Lx‖Y ≤ 1 + MK

1− cK(1 + MK)
‖G(ũ)x‖Y . (20)

On the other hand, substituting (19) and (18) into (16), we have

‖x‖X ≤ c‖Lx‖Y + M‖s‖Y

≤ c‖Lx‖Y + M(‖G(ũ)x‖Y + Kc‖Lx‖Y )
= c(1 + MK)‖Lx‖Y + M‖G(ũ)x‖Y .

From this and (20), we have

‖x‖X ≤ c(1 + MK) + M

1− cK(1 + MK)
‖G(ũ)x‖Y . (21)

Summing up the above-mentioned discussions, we finally have@@@@@@@

‖x‖L = ‖x‖X + ‖Lx‖Y ≤ (1 + c)(1 + MK) + M

1− cK(1 + MK)
‖G(ũ)x‖Y

provided that cK(1 + MK) < 1. This proves Theorem 1. QED

4 Proof of Theorem 2

We shall prove Theorem 2 by showing that the operator T defined in the below
becomes a contraction mapping on Up under the conditions of Theorem 2. Using
G(ũ)−1, let us define an operator T : D′ → D′ by

Tu = G(ũ)−1(S(ũ)u−Nu).

Since G(ũ)−1 exists, a fixed point of T is a solution of Eq. (1). In the first place,
we shall show that TUp ⊂ Up. For any u ∈ Up, we have

‖Tu− ũ‖L = ‖G(ũ)−1(S(ũ)u−Nu)− ũ‖L

= ‖G−1(S(ũ)u−Nu−G(ũ)ũ)‖L

≤ C‖S(ũ)u−Nu−G(ũ)ũ‖Y

= C‖S(ũ)u−Nu− Lũ− S(ũ)ũ‖Y

= C(‖ −Nu + Nũ− S(ũ)(ũ− u)‖Y + r). (22)
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From the following estimate,

Nu = Nũ + S(ũ)(u− ũ) + R,

‖R‖Y ≤ a

2
‖u− ũ‖Y ,

we have

‖Tu− ũ‖ ≤ C(
a

2
‖u− ũ‖2

Y + r)

≤ C(
a

2
p2 + r) < p. (23)

This implies TUp ⊂ Up.
We now show that T is contractive on Up. For for u, v ∈ Up, we have

‖Tu− Tv‖L ≤ ‖G(ũ)−1(S(v)u−Nu)−G(ũ)−1(S(v)v −Nv)‖L

= ‖G(ũ)−1(S(v)(u− v)− (Nu−Nv))‖L

≤ C‖S(v)(u− v)− (Nu−Nv)‖Y .

Using the formula

Nu−Nv =
∫ 1

0

S(u + t(v − u))(v − u)dt,

it is seen that

‖S(v)(u− v)− (Nu−Nv)‖Y

= ‖
∫ 1

0

S(u + t(v − u))− S(v)(v − u)dt‖Y

≤
∫ 1

0

sup
t
‖S(u + t(v − u))− S(v)(v − u)‖L(D′,Y )‖v − u‖Ldt

= a‖v − u‖L.

Thus we have
‖Tu− Tv‖L ≤ aCp‖v − u‖L. (24)

This shows that T is contractive on Up. Thus it follows that there exists unique
a fixed point u∗ of T in Up. From the relation

‖u∗ − ũ‖L ≤ (
a

2
Cp‖Tu∗ − ũ‖L + Cr),

we obtain an error bound
‖u∗ − ũ‖L ≤ 2Cr.

This completes the proof. QED

5 Applications to Ordinary Differential Equa-
tions

In this section, taking a simple example, we study an application of the results
in the previous sections to obtain a periodic solution of ordinary differential
equations. For the sake of simplicity, we consider the following Duffing equation

x′′ + Ax′ + Bx3 − C cos t = 0, t ∈ J = (0, 2π).
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Let L2(0, 2π) and H2(0, 2π) be the square integrable function’s Lesbesgue space
and the Sobolev space with norms

‖x‖2 =

√
1
2π

∫ 2π

0

|x(t)|2 dt

and
‖x‖H2 =

√
‖x‖2 + ‖x′‖2 + ‖x′′‖2,

respectively. Let X = Y = L2(0, π). Let us define operators L : D(L) = {x|x ∈
X, x(t) = −x(t + π)} → L2(0, 2π) and N : D(L) → L2(0, 2π) by

Lx = x′′ + Ax′

and
Nx = Bx3 − C cos t,

respectively. Then, the graph norm associated with L is defined as

‖x‖L = ‖x‖2 + ‖x′′ + Ax′‖2.

We have

Lemma 1 For x ∈ D(L), we can expand x as

x =
√

2
∞∑

n=1

(an cos(2n− 1)t + bn sin(2n− 1)t).

If we define a projection operator Pm : D(L) → R2m+1 by

Pmx =
√

2
m∑

n=1

(an cos(2n− 1)t + bn sin(2n− 1)t),

we have

‖x− Pmx‖2 ≤
1

(2m + 1)2

√
1 +

A2

(2m + 1)2
‖Lx‖2.

Proof
Let

x′(t) =
√

2
∞∑

n=1

(a′n cos(2n− 1)t + b′n sin(2n− 1)t)

and

x′′ =
√

2
∞∑

n=1

(a′′n cos(2n− 1)t + b′′n sin(2n− 1)t).

Then, we have
a′n = (2n− 1)bn, b′n = −(2n− 1)an,

and
a′′n = −(2n− 1)2an, b′′n = −(2n− 1)2bn.
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Thus if we put

x′′ + Ax′(t) =
√

2
∞∑

n=1

(ãn cos(2n− 1)t + b̃n sin(2n− 1)t),

we have

ãn = −(2n− 1)2an + (2n− 1)Abn, b̃n = −(2n− 1)Aan − (2n− 1)2bn,

or

an =
−(2n− 1)2ãn − (2n− 1)Ab̃n

(2n− 1)4 + (2n− 1)2A2

and

bn =
−(2n− 1)2b̃n + (2n− 1)Aãn

(2n− 1)4 + (2n− 1)2A2
.

Let us now consider ‖x− Pmx‖2
2. From the Perseval equality, we have

‖x− Pmx‖2
2

=
∞∑

n=m+1

(a2
n + b2

n)

≤
∞∑

n=m+1

(2n− 1)4 + (2n− 1)2A2

(2n− 1)4 + A2(2n− 1)2
(ã2

n + b̃2
n)

≤ 1
(2m + 1)4

(1 +
A2

(2m + 1)2
)‖Lx‖2

2.

Thus we have the desired inequality. 2

Moreover, we have

Lemma 2 For x ∈ H2(0, 2π), we have

b‖x‖L ≤ ‖x‖H2 ≤ b′‖x‖L,

where
b =

1
max(1, A)

and
b′ =

√
2(1 + A2).

Proof
From the Perseval equality, we have

‖x′′‖2
2

=
∞∑

n=1

(a′′n
2 + b′′n

2)

≤
∞∑

n=1

(2n− 1)4((2n− 1)4 + A2(2n− 1)2)
[(2n− 1)4 + A2(2n− 1)2]2

(ã2
n + b̃2

n)

≤ (1 + A2)‖Lx‖2
2.

(25)
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Similarly, we have
‖x′‖2

2 ≤ (1 + A2)‖Lx‖2
2.

Thus we have

‖x′′‖2
2 + ‖x′‖2

2 + ‖x‖2
2

≤ ‖x‖2
2 + 2(1 + A2)‖Lx‖2

2

≤ 2(1 + A2)‖Lx‖2
L, (26)

which is the right half of the desired inequalities.
On the other hand, we have

‖x‖L

= ‖x‖2 + ‖x′′ + Ax′‖2

≤ ‖x‖2 + ‖x′′‖2 + A‖x′‖2

≤ max(1, A)‖x‖H2 .

(27)

This is the desired result. 2

Using these result, we have obtained an approximate 2π-periodic solution of
the Duffing equation with A=0.1, B=1, and C=0.4464 as follows:

x(t) = 1.27737 cos t + 0.38447 sin t

+ 0.05362 cos 3t + 0.0628 sin 3t

+ 0.00061 cos 5t + 0.00483 sin 5t

+ 0.00013 cos 7t + 0.00000088 sin 9t

+ 0.0000010 cos 11t + 0.00000004 sin 11t

+ 0.00000005 cos 13t + 0.00000003 sin 13t.

For this approximate solution, as a result of estimation, we have

M = 3.118, r = 0.000000675,K = 6.8682, a = 10.41.

From these constants, we have

C = 81.17823, p = 0.00011, aCp ≤ 0.0925.
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