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This talk presents a refinement of a result of Delsarte, Genin, Kamp [2] re-
garding the number of zeros on the unit circle of eigenpolynomials of complex
Hermitian Toeplitz matrices and generalized Caratheodory representations of
such matrices. This is achieved by exploring a key observation of Schur [7]
stated in his proof of a famous theorem of Carathéodory [1]. In short, Schur
observed that companion matrices corresponding to eigenpolynomials of Her-
mitian Toeplitz matrices H define isometries with respect to (spectrum shifted)
submatrices of H. Looking at possible normal forms of these isometries leads
directly to the results. This geometric, conceptual approach can be generalized
to Hermitian or symmetric Toeplitz matrices over arbitrary fields. Furthermore,
as a byproduct, Iohvidov’s law in the jumps of the ranks and the connection
between the Iohvidov parameter and the Witt index are established for such
Toeplitz matrices. In the sequel the topic is explained in more detail.

A famous theorem of Carathéodory [1] states that for arbitrary complex num-
bers a1, ..., an, n ∈ N 1, not all zero, there exist uniquely determined data m ∈ N
with m ≤ n, pairwise distinct ε1, ..., εm ∈ C of modulus one and positive real
numbers r1, ..., rm such that

ai =

m∑
j=1

rjε
i
j (1)

for all i ∈ {1, ..., n}. Carathéodory proved his theorem by means of geometric
considerations on convex bodies. Soon after Carathéodory, Fischer [3], Schur [7]
and also Frobenius [4] gave algebraic proofs of this theorem. From the very be-
ginning the connection between Carathéodory’s theorem and Hermitian Toeplitz
matrices was clear: Define

µ := µ(a1, ..., an) := r1 + ...+ rm > 0,

1N := {1, 2, 3, ...}, N0 := {0, 1, 2, 3, ...}



R := diag(r1, ..., rm) ∈ Cm,m and the Vandermonde matrix

V :=


1 1 . . . 1
ε1 ε2 . . . εm
ε21 ε22 . . . ε2m
...

...
...

...
εn1 εn2 . . . εnm

 ∈ Cn+1,m. (2)

Then, the Hermitian Toeplitz matrix

H := H(µ, a1, ..., an) :=



µ a1 a2 ... an
a1 µ a1 a2 ...

a2 a1 µ
. . .

...
...

. . .
. . .

. . .
...

an ... a2 a1 µ

 ∈ Cn+1,n+1.

is positive semidefinite and admits the representation H = V RV T . Therefore,
the vector p = (p0, ..., pm, 0, ..., 0)T ∈ Cn+1 consisting of the coefficients of the
polynomial

p(x) :=
m∏
i=1

(x− εi) =
m∑
i=0

pix
i (3)

is contained in the kernel of H since V T p = (p(ε1), ..., p(ε1)
m)T = 0, and p(x)

is the uniquely determined nonzero monic (eigen-)polynomial of smallest degree
with this property. Conversely, given an arbitrary Hermitian Toeplitz matrix
H = H(a0, ..., an) ∈ Cn+1,n+1, a0, ..., an ∈ C, which is not a diagonal matrix,
i.e., a1, ..., an not all zero, then, necessarily, λ := a0−µ(a1, ..., an) is the smallest
eigenvalue of H, and, if m ≤ n, εi and ri are chosen according to Carathéodory’s
theorem for a1, ..., an, then H admits the so-called Carathéodory representation

H = V RV T + λIn+1 , (4)

where R and V are defined as before. From the previous also follows that p(x)
as defined in (3) is the uniquely determined nonzero monic eigenpolynomial of
smallest degree corresponding to the smallest eigenvalue λ of H, and is therefore
proved to have simple roots on the unit circle. By replacing H by −H, the
same holds true for the uniquely determined eigenpolynomial of smallest degree
corresponding to the largest eigenvalue of H. This special root distribution
of eigenpolynomials corresponding to the extremal eigenvalues of Hermitian
Toeplitz matrices is widely discussed and repeatedly reproved in the literature,
surely also because of its direct applications in the area of signal processing.

A good survey article on this subject was written by Genin [5]. There it
is stated that the following result from Delsarte, Genin and Kamp [2] is the
most general known one regarding the number of roots on the unit circle of any
eigenpolynomial corresponding to any eigenvalue of a given complex Hermitian
Toeplitz matrix:



Theorem 1 (Delsarte, Genin, Kamp). Let H ∈ Cn+1,n+1, n ∈ N0, be a
Hermitian Toeplitz matrix with eigenvalues λ0 ≤ λ1 ≤ ... ≤ λn, and let λs,
s ∈ {0, ..., n}, be one of them with multiplicity m and Iohvidov parameter k.
The index s shall be chosen such that either s = 0 or λs > λs−1. Then, any
eigenpolynomial ps(x) corresponding to λs has at least |n−m− 2s+ 1| and at
most n− 2k zeros on the complex unit circle.

Both bounds stated in Theorem 1 are sharp in the sense that examples exist
that attain them. The upper bound n − 2k involves the less commonly known
Iohvidov parameter k of an eigenvalue λ of a Hermitian, non-diagonal Toeplitz
matrix H = H(a0, ..., an) ∈ Cn+1,n+1. It is defined as follows: Let m be the
multiplicity of λ and let r ∈ {0, ..., n} be maximal subject to λ being not an
eigenvalue of the principal submatrix Hr := H(a0, ..., ar), i.e., Hr − λIr+1 is
regular. If such an r does not exist, set r := −1. It follows from results of
Iohvidov [6], that n − m − r is an even, non-negative integer, wherefore the
Iohvidov parameter

k :=
1

2
(n−m− r) (5)

is well-defined. It is known, (see, for example, [2]) that any eigenpolynomial
q(x) of H corresponding to λ has the form

q(x) = xkp(x)s(x) , (6)

where p(x) is the uniquely determined monic eigenpolynomial of degree r+1 of
Hr+1 corresponding to the eigenvalue λ and s(x) is an arbitrary polynomial of
degree at most m− 1. Since deg(p(x)s(x)) ≤ r +m = n− 2k, this is clearly an
upper bound for the number of zeros on the unit circle of q(x). Thus, actually,
only the lower bound |n−m− 2s+ 1| given in Theorem 1 is non-trivial.

Delsarte, Genin and Kamp obtain this bound by considering two-variable
Levinson polynomials and exploring their properties. The purpose of this talk is
to give a different, more conceptual proof, exploiting the observation of Schur [7]
that companion matrices of eigenpolynomials of Hermitian Toeplitz matrices
define isometries of Hermitian forms defined by certain Toeplitz submatrices.

Looking at the signature of these Hermitian forms and the possible normal
forms of those isometries immediately gives the result. Moreover, this approach
additionally allows to deduce statements not only on the total number of roots
on the unit circle but also on their multiplicities. Recall that also the origi-
nal result of Carathéodory involves a statement on multiplicities, namely that
all roots of the eigenpolynomial of smallest degree corresponding to the small-
est/largest eigenvalue of a non-diagonal Hermitian Toeplitz matrix are simple.
This fact is by no means trivial compared to just proving that all roots of that
eigenpolynomial are located on the unit circle. Furthermore, the perspective of
normal forms of Schur’s isometries does not rely on the field of complex numbers
and draws direction to describing the eigenpolynomial structure of Hermitian
or symmetric Toeplitz matrices over arbitrary fields. The main result for the
classical complex Hermitian case refining Theorem 1 reads as follows:



Theorem 2 (Main Theorem for complex Hermitian Toeplitz matrices).
Let H ∈ Cn+1,n+1, n ∈ N0, be a Hermitian Toeplitz matrix with eigenvalues
λ0 ≤ λ1 ≤ ... ≤ λn, and let λ = λs, s ∈ {0, ..., n}, be one of them with
multiplicity m and Iohvidov parameter k. The index s shall be chosen such
that either s = 0 or λs > λs−1. Furthermore, let p(x) be the monic eigen-
polynomial of smallest degree corresponding to λ. The distinct roots of p(x)
on the unit circle are denoted by α1, ..., αa, a ∈ N0, and their multiplicities
by m1, ...,ma. The remaining non-zero roots of p(x) occur in conjugate pairs

{β1, β1
−1},...,{βb, βb

−1}, b ∈ N0, where βi and βi
−1

have the same multiplicity
ni, i = 1, ..., b. Then,

a ≥ |{i ∈ {1, ..., a} | mi odd }| ≥ |n−m− 2s+ 1| , (7)

a∑
i=1

⌊mi

2

⌋
+

b∑
i=1

ni ≤
n−m+ 1− |n−m− 2s+ 1|

2
− k . (8)

In the extremal cases s = 0 (smallest eigenvalue) and s = n−m+1 (largest

eigenvalue) holds n−m+1−|n−m−2s+1|
2 = 0 wherefore (8) implies k = 0 = b,

and mi = 1 for all i = 1, ..., a, i.e., all roots of p(x) lie on the unit circle and
are simple. This is the classical result following from Carathéodory’s theorem.
Note also, that by Equation (6) Theorem 2 gives (sharp) lower bounds for the
multiplicities of the roots on the unit circle of any eigenpolynomial.
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[1] C. Carathéodory, Über den Variabilitätsbereich der Fourierschen Kon-
stanten von positiven harmonischen Funktionen, Rendiconti del Circolo Matem-
atico di Palermo, Vol. 3, pp. 193–217, 1911.

[2] P. Delsarte, Y. Genin, Y. Kamp, Parametric Toeplitz Systems, Circuits,
Systems and Signal Processing, Vol. 3 (2), pp. 207–223, 1984.
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