
Verified computation of inverse square
root and the sign functions of a matrix

Andreas Frommera, Behnam Hashemib and Thomas Sablika

a University of Wuppertal, Wuppertal, Germany,
b Shiraz University of Technology, Shiraz, Iran,

frommer@math.uni-wuppertal.de
hashemi@sutech.ac.ir

sablik@uni-wuppertal.de

Keywords: Matrix inverse square root, Matrix sign function, Interval arith-
metic, Krawczyk-Rump iteration, Verified computation

1 Enclosures for the matrix inverse square root

The inverse square root of an n × n matrix A satisfies the nonlinear matrix
equation

F (X) = XAX − I = 0. (1)

The following result goes back to Rump’s Ph.D. thesis [3] and is based on
[4]. A proof can also be found in [1].

Theorem 1. Assume that f : D ⊂ CN → CN is continuous in D. Let x̌ ∈ D
and z ∈ ICN be such that x̌ + z ⊆ D. Moreover, assume that S ⊂ CN×N is
a set of matrices containing all slopes S(x̌, y) for y ∈ x̌ + z =: x. Finally, let
R ∈ CN×N . Denote by Kf (x̌, R, z,S) the set

Kf (x̌, R, z,S) := {−Rf(x̌) + (I −RS)z : S ∈ S, z ∈ z}. (2)

Then, if
Kf (x̌, R, z,S) ⊆ intz, (3)

the function f has a zero x∗ in x̌ + Kf (x̌, R, z,S) ⊆ x. Moreover, if S also
contains all slope matrices S(x, y) for x, y ∈ x, then this zero is unique in x.

The matrix equation (1) can be written as the vector function

f(x) = (XT ⊗X)a− i,

where f(x) := vec(F (X)), a := vec(A), i := vec(I) and ⊗ denotes the matrix
Kronecker product. For any two matrices X and Y we can show that S(x, y) =
I⊗XA+(AY )T ⊗I is a slope for f . For a possible application of the Krawczyk
operator we see that we can take S = I ⊗XA+(AX)T ⊗ I. Here we explicitly
see that the computation of RS has complexity O(n5), since XA and AX
usually are dense matrices and thus S has 2n non-zeros per column.



We propose two methods based on interval arithmetic to compute an en-
closing interval matrix for the exact inverse square root of a matrix A. Starting
from an approximate inverse square root, these methods use a modification of
the Krawczyk operator which reduces the computational complexity from O(n5)
or higher of the standard approach to O(n3). Moreover, the methods use almost
exclusively matrix-matrix operations and are thus particularly efficient with cur-
rent implementations of machine interval arithmetic in INTLAB and C-XSC.
For sake of simplicity, let us first assume that the matrix A is diagonalizable.
We then can decompose A as

A = V ΛW, with V,W,Λ ∈ Cn×n, Λ = Diag (λ1, . . . , λn), V W = I. (4)

Of course, W = V −1, but it will turn out useful to have this additional notation
available when we have to account for the fact that inverses are usually not
available exactly when computed in floating point arithmetic.

1.1 Reducing the wrapping effect

In several lines of our algorithm we perform two-sided interval matrix multipli-
cations. The result is an interval matrix which can be quite substantially larger
than the interval hull of all point matrices due, in particular, to the so-called
wrapping effect of interval arithmetic. If we can avoid multiplications with IW

and IV , we might succeed more often and with narrower intervals. The key is
to consider the linearly transformed function

f̂(x̂) = (V T ⊗W ) f
(
(V −T ⊗W−1)x̂

)
,

or, equivalently, in matrix form

F̂ (X̂) = W · F
(
W−1X̂V −1

)
· V.

The slope Ŝ(x̂, ŷ) of this linear transformation of f can therefore be computed
as follows.

F̂ (X̂)− F̂ (Ŷ ) = W ·
(
F (W−1X̂V −1)− F (W−1Ŷ V −1)

)
· V

If X := W−1X̂V −1 and Y := W−1Ŷ V −1, we have

F̂ (X̂)− F̂ (Ŷ ) =WXAXV −WYAY V ±WXAY V

=WXA(X − Y )V +W (X − Y )AY V.

So,

f̂(x̂)− f̂(ŷ) =
(
V T ⊗WXA+ (AY V )T ⊗W

)
(x− y)

=
(
V T ⊗WXA+ (AY V )T ⊗W

)
(V −T ⊗W−1) · (x̂− ŷ)

=
(
I ⊗ (WXAW−1) + (V −1AY V )T ⊗ I

)
· (x̂− ŷ)



which means that

Ŝ(x̂, ŷ) = I ⊗ (WXAW−1) + (V −1AY V )T ⊗ I.

Given x̌ = vec(X̌ ≈ A−1/2) and (V T ⊗ W )x̌ the corresponding approximate

zero of f̂ , the interval matrix

S = I ⊗ (WXAIW ) + (IV AXV )T ⊗ I,

where X = X̌ + IW ẐIV contains all slopes from Ŝ = {Ŝ(x̂, ŷ), x̂, ŷ ∈ x̂ =
(V T ⊗W )x̌+ ẑ}.

We can therefore compute a superset for Kf̂ ((V
T ⊗W )x̌,∆−1, ẑ, Ŝ) as

∆−1
(
−(V T ⊗W )f(x̌) + (∆− S)ẑ

)
.

1.2 Modification when A cannot be stably diagonalized

In the case that the matrix A cannot be stably diagonalized, we have the op-
tion of using a block diagonalization of A, and our suggested methods can, in
principle, still be applied. Our algorithms can be modified in the case that V
is ill-conditioned (and also when A is not diagonizable at all) in the following
manner: Instead of the spectral decomposition we use the block diagonalization
of Bavely and Stewart to control the condition number of V at the expense of
having D with (hopefully small) blocks along the diagonal. The block diagonal
factorization can be written as

A = V −1ΓV, (5)

where Γ is block diagonal with each diagonal block being triangular.
We now can proceed in exactly the same manner as outlined in section

1.1 with Λ1/2 replaced by Γ1/2 everywhere, where for each diagonal block of
Γ we obtain its square root, a triangular matrix, just approximately via some
floating point algorithm. Occurrences of ∆−1 must be replaced by a forward
substitution with the large, sparse triangular matrix I ⊗ Γ1/2 + Γ1/2 ⊗ I. This
forward substitution cannot be cast into a matrix-matrix operation, making the
modified algorithm substantially slower when implemented in INTLAB or C-
XSC. Also, the diagonal blocks should all be small in size, because otherwise
the dependence property of interval arithmetic will yield very large intervals
as a result of the substitution process. We refer to [1] for further details and
a discussion of why a standard Schur decomposition of A, i.e. an orthogonal
reduction to (full) triangular form, is not a viable approach for an enclosure
method based on machine interval arithmetic. Future research will address the
question whether in this case we can modify our approach in a manner that it
again uses only matrix-matrix operations and to which extent the dependence
problem when solving linear recurrences can be avoided.



2 Enclosures for the matrix sign function

Let the non-singular matrix A have no purely imaginary eigenvalues. The matrix
inverse square root can be expressed as

sign(A) = A (A2)−1/2. (6)

Here, (A2)1/2 denotes the principal square root of A2. Note that A having no
purely imaginary eigenvalues is equivalent to A2 having no eigenvalues on R−.

As opposed to the (inverse) square root, there seems to be no nonlinear
function for which sign(A) would appear directly as a non-isolated zero and on
which we could use interval arithmetic to compute an enclosure for its zero. We
can, however, use the relation (6) and proceed as follows:

Step 1. Use interval arithmetic to compute an interval matrix A2 that
contains the exact result of the matrix-matrix multiplication A2 = A ·A.

Step 2. Use a modification of the above-mentioned algorithms to compute
an interval matrix X that satisfies

X ⊇ {B−1/2 | B ∈ A2}.

Step 3. Use interval arithmetic to compute an interval matrix S = AX
which, by (6) and the enclosure property of interval arithmetic, contains
sign(A).

Due to the enclosure property of interval arithmetic, a modified Krawczyk-
Rump type iterative algorithm computes an interval matrix K such that

vec(K) ⊇ KfA2
(x̌, R, z,S) for all A2 ∈ A2,

where FA2(X) = XA2X − I and S is an interval matrix which contains all
slopes SfA2

(x, y) for all A2 ∈ A2 and all x, y ∈ X = X̌ + Z. Therefore, if
K ⊂ intZ we can apply Brouwer’s fixed point theorem to each of the functions
fA2 individually. The enclosure property of interval arithmetic implies that
sign(A) = A(A2)−1/2 ∈ AX. See [2] for more details.

References:

[1] A. Frommer and B. Hashemi, Verified Computation of Square Roots of
a Matrix, SIAM J. Matrix Anal. Appl., 31, pp. 1279–1302, 2009.

[2] A. Frommer, B. Hashemi and T. Sablik, Computing enclosures for the
inverse square root and the sign function of a matrix, Linear Algebra Appl.,
Accepted for publication in the special issue on matrix functions, 2014.

[3] Siegfried M. Rump, Kleine Fehlerschranken bei Matrixproblemen, Fakultät
für Mathematik, Universität Karlsruhe, 1980.

[4] R. Krawczyk, Newton-Algorithmen zur Bestimmung von Nullstellen mit
Fehlerschranken, Computing, 4, pp. 187–201, 1969.


