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A 3-dimensional manifold, often abbreviated by 3-manifolds, is defined as a
topological space locally modeled on the 3-dimensional Euclidean space R3. For
example, our universe seems to be a 3-dimensional space locally near our earth,
and so, if we believe the cosmological principle, i.e., viewed on a sufficiently
large scale, the properties of the universe are the same for all observers, then
our universe is an example of a 3-manifold.

The study of 3-dimensional manifolds starts with the seminal papers by H.
Poincaré in 1894–1904. In the last of these six papers, he raised a question,
which is now called the Poincaré Conjecture; Is every simply connected, closed
3-manifold homeomorphic to the 3-sphere? (The 3-sphere S3 is the most sim-
ple closed 3-manifold, which can be regarded as R ∪ {∞}, i.e., the one-point
compactification of R3.) This has been one of the driving forces for (low-
dimensional) topology, and a great amount of effort was spent in pursuit of
a solution. In fact, it was selected as one of the Millennium Prize Problems
stated by the Clay Mathematics Institute in 2000.

After nearly a century later, in 2002–2003, G. Perelman finally reached to the
end of the struggles by providing an affirmative answer to the Geometrization
Conjecture, an extended version to the Poincaré Conjecture. See [7] as detailed
references for example.

By the celebrated Perelman’s works, we now have a classification theorem
for 3-manifolds. Beyond the classification theorem, one of the next directions
in the study of 3-manifolds is to consider the relationships between 3-manifolds.
One of the important operations describing such a relationship would be Dehn
surgery ; an operation to create a new 3-manifold from a given one and a given
knot by removing an open tubular neighborhood of the knot, and gluing a solid
torus back. This gives an interesting subject to study; because, for instance, it
is known that any pair of closed orientable 3-manifolds are related by a finite
sequence of Dehn surgeries on knots.

On the other hand, by the classification theorem for 3-manifolds, now we
know that all closed orientable 3-manifolds are classified into; reducible (i.e.,



containing essential 2-spheres), toroidal (i.e., containing essential tori), Seifert
fibered (i.e., foliated by circles), or hyperbolic manifolds (i.e., admitting a com-
plete Riemannian metric with constant sectional curvature −1).

Among the above four classes of 3-manifolds, many researchers would believe
that the hyperbolic 3-manifolds are “ubiquitous” in a sense. This intuition can
be justified in terms of Dehn surgery as follows.

The well-known Hyperbolic Dehn Surgery Theorem says that, all but only
finitely many Dehn surgeries on a hyperbolic knot (i.e., a knot with the com-
plement admitting a hyperbolic structure) yield hyperbolic manifolds. In view
of this, such finitely many exceptions are called exceptional surgeries.

To establish a complete classification of exceptional surgeries on hyperbolic
knots in the 3-sphere S3 would be one of the most important but challenging
problems in the study of 3-manifolds, and also in Knot Theory. Toward the
ultimate goal to this problem, some of the partial solutions have been obtained.

Here we consider exceptional surgery on hyper-
bolic alternating knots in S3, one of the most well-
known classes of knots. A knot in S3 is called al-
ternating if it admits a diagram with alternatively
arranged over-crossings and under-crossings running
along it. See the right figure for example. (The knot
is so-called the figure-eight knot, that is the simplest
hyperbolic knot, i.e., the complement has the mini-
mal volume among hyperbolic knots.)

Our main result is to provide a complete classification of exceptional surgeries
on alternating knots. We here omit the details. Please see our paper [3].

We insist that our result is purely mathematical, but our proof is computer-
aided via verified numerical computation. Actually, due to the result of Lack-
enby [5], we have only finitely many (but a huge number of) links to be checked.
Thus our task is to investigate the surgeries on these finite number of links.

In [6], Martelli-Petronio-Roukema gave a complete classification of excep-
tional surgeries on the minimally twisted five-chain link, a well-known hyper-
bolic link of 5 components in S3, via a computer-aided method. Our program
is essentially due to their technique, but, to achieve mathematically rigorous
computations, we improved their codes using verified numerical analysis based
on interval arithmetics. However applying it for all the links obtained by [5] is
computationally expensive, for the number of the links are roughly estimated to
be in the millions. Therefore we give a number of (mathematical) observations
to reduce the number of links we need to check. Even with this reductions, as
the verification needed for each link is an involved process, the size of the compu-
tation is outside the scope of a personal computer. To be more specific, we have
30,404 links to investigate, and for each single link, we have to apply recursively
the program “hikmot” [2], developed in [1] via verified numerical analysis. In
fact, in the worst case, we have to apply the procedure more than 18,000 times
for a link. Therefore, we ran our computations on the super-computer, “TSUB-



AME” (Tokyo-tech Supercomputer and UBiquitously Accessible Mass-storage
Environment), housed at Tokyo Institute of Technology. See its website [8]
for a basic information. Roughly speaking, on TSUBAME, one can use many
machines at the same time. Although generally, to use parallel computation
effectively we need some work, in our case, the situation itself is totally parallel,
that is, we need to investigate each link independently. Thus we can use TSUB-
AME effectively. In practice, we “rent” 320 machines from TSUBAME, and
then it took a day to achieve our result. By running our main program fef.py

(short for find exceptional fillings) on TSUBAME, we have 30404 output files
and error files. A pseudo-code for fef.py is provided as Algorithm 1, and all
codes and the result data are available at [4].

In the worst case, it takes about 51 hours on a single CPU of TSUBAME
(The computational ability of a single CPU of TSUBAME is comparable to that
of a standard personal computer). In total, i.e. the sum of the computation time
of all nodes, computation time was approximately 512 days, and the number of
manifolds we applied hikmot is 5,646,646. Fortunately, for all 30404 links, the
outputs show that they have no unexpected exceptional surgery. This verifies
our proof of the theorem.
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Algorithm 1 The algorithm for fef.py

Require: A triangulation T of a manifold N .
Ensure: A verification that all non-trivial Dehn surgeries of a manifold fitting
certain conditions are hyperbolic.
Try to canonize T .
if T can be canonized and hikmot verified the hyperbolicity of canonized
triangulation. then
Use the canonized triangulation.

else if Find a triangulation whose hyperbolicity is checked by hikmot. then
Use the found triangulation.

else
If we cannot find any triangulation that hikmot verifies hyperbolicity, we
give up. (This didn’t happen in our computation for alternating knots)

end if
Compute lower bounds for the cusped areas of N using the (already) verified
tetrahedral shapes for T . For each cusp, also compute the cusp shape as
an parallelogram determined by a quotient of the complex plane by 1 and
x + yi. Finally, compute a lower bound for the diameter of the horoball for
that cusp and enforce with this bound that the intersection of the boundary
of a horoball (not centered at ∞) and a ideal tetrahedron having a vertex at
∞ intersect in a triangle.
if Failed on some procedure above. then

Use 3
√
3

8 as a lower bound for cusp area. For these cusps, the cusp shape is

determined by 1 and x+ yi with x = 0 and y = 3
√
3

8 .
end if
The length of a slope p

q is
√

A
y ((p+ xq)2 + (yq)2, where A is the area of

corresponding horosphere. List all slopes of length less than 6.0001 in these
cusps. For slopes on each cusp less than length 6.0001, perform surgery with
that slope if it meets certain conditions.
if All cusps have been surgered along. then
Verify that the surgered manifold is hyperbolic.

else
Verify this intermediately surgered manifold is hyperbolic and repeat the
procedure above to find all slopes of length less than 6.0001 in the cusps of
this partially surgered manifold and (recursively) verify the hyperbolicity
of these surgeries.

end if


