A Modified Verification Method for Linear Systems

Atsushi Minamihata ${ }^{1}$, Kouta Sekine ${ }^{1}$, Takeshi Ogita ${ }^{3,5}$, Siegfried M. Rump ${ }^{4}$, Shin'ichi Oishi ${ }^{2,5}$
${ }^{1}$ Graduate School of Fundamental Science and Engineering, Waseda University
${ }^{2}$ Department of Applied Mathematics, Faculty of Science and Engineering, Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
${ }^{3}$ School of Arts and Sciences, Tokyo Woman's Christian University 2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan
${ }^{4}$ Institute for Reliable Computing, Hamburg University of Technology Schwarzenbergstraße 95, Hamburg 21071, Germany
${ }^{5}$ JST, CREST aminamihata@moegi.waseda.jp

Keywords: Verified Numerical Computations, Linear Systems
This talk is concerned with the problem of verifying the accuracy of approximate solutions of linear systems. Let \mathbb{R} be the set of real numbers. For $A \in \mathbb{R}^{n \times n}$, the comparison matrix of A is denoted by $\langle A\rangle$.

For a linear system

$$
\begin{equation*}
A x=b, \quad A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

we can efficiently obtain a computed solution by some numerical algorithm. In general, however, we do not know how accurate the computed solution is. For this purpose, several verification methods have been proposed (cf. e.g. [1,2]).

In this talk we propose an efficient method of calculating a componentwise error bound of the computed solution of (1), which is based on the following Rump's theorem:

Theorem 1 (Rump [1, Theorem 2.1]). Let $A \in \mathbb{R}^{n \times n}$ and $b, \tilde{x} \in \mathbb{R}^{n}$ be given. Assume $v \in \mathbb{R}^{n}$ with $v>\mathbf{0}$ satisfies $u:=\langle A\rangle v>\mathbf{0}$. Let $\langle A\rangle=D-E$ denote the splitting of $\langle A\rangle$ into the diagonal part D and the off-diagonal part $-E$, and define $w \in \mathbb{R}^{n}$ by

$$
w_{k}:=\max _{1 \leq i \leq n} \frac{G_{i k}}{u_{i}} \quad \text { for } 1 \leq k \leq n,
$$

where $G:=I-\langle A\rangle D^{-1}=E D^{-1} \geq O$. Then A is nonsingular, and

$$
\begin{equation*}
\left|A^{-1} b-\tilde{x}\right| \leq\left(D^{-1}+v w^{T}\right)|b-A \tilde{x}| . \tag{2}
\end{equation*}
$$

In particular, the method based on Theorem 1 is implemented in the routine verifylss in INTLAB Version 7 [3].

We modify Theorem 1 as follows:

Theorem 2. Let A, b, \tilde{x}, u, v, w be defined as in Theorem 1. Define $D_{s}:=$ $\operatorname{diag}(s)$ where $s \in \mathbb{R}^{n}$ with

$$
s_{k}:=u_{k} w_{k} \quad \text { for } 1 \leq k \leq n .
$$

Then

$$
\begin{equation*}
\left|A^{-1} b-\tilde{x}\right| \leq\left(D^{-1}+v w^{T}\right)\left(I+D_{s}\right)^{-1}|b-A \tilde{x}| . \tag{3}
\end{equation*}
$$

Proof. From the definition of u and w, it holds

$$
I-\langle A\rangle D^{-1} \leq u w^{T}
$$

Since $\operatorname{diag}\left(I-\langle A\rangle D^{-1}\right)=\mathbf{0}$, we have

$$
I-\langle A\rangle D^{-1}+D_{s} \leq u w^{T}
$$

and

$$
\begin{equation*}
I+D_{s} \leq\langle A\rangle D^{-1}+u w^{T} . \tag{4}
\end{equation*}
$$

From the assumption, A is an H-matrix, so that $\langle A\rangle^{-1} \geq O$. Multiplying (4) from the left by $\langle A\rangle^{-1}$ yields

$$
\langle A\rangle^{-1}\left(I+D_{s}\right) \leq D^{-1}+\langle A\rangle^{-1} u w^{T}=D^{-1}+v w^{T} .
$$

Since $\left(I+D_{s}\right)^{-1} \geq O$, we have

$$
\begin{equation*}
\langle A\rangle^{-1} \leq\left(D^{-1}+v w^{T}\right)\left(I+D_{s}\right)^{-1} \tag{5}
\end{equation*}
$$

Using $\left|(A)^{-1}\right| \leq\langle A\rangle^{-1}$ and (5),

$$
\begin{aligned}
\left|A^{-1} b-\tilde{x}\right| & \leq\left|A^{-1}\right||b-A \tilde{x}| \leq\langle A\rangle^{-1}|b-A \tilde{x}| \\
& \leq\left(D^{-1}+v w^{T}\right)\left(I+D_{s}\right)^{-1}|b-A \tilde{x}|,
\end{aligned}
$$

which proves the theorem.
Theorem 2 always gives better bounds than Theorem 1 since $\left(I+D_{s}\right)^{-1} \leq$ I. Numerical results will be shown to illustrate the efficiency of the proposed theorem. A generalization of Theorem 2 will be presented.

References:

[1] S. M. Rump, Accurate solution of dense linear systems, Part II: Algorithms using directed rounding, J. Comp. Appl. Math., 242 (2013), 185-212.
[2] S. Oishi, S. M. Rump, Fast verification of solutions of matrix equations, Numer. Math., 90:4 (2002), 755-773.
[3] S. M. Rump, INTLAB - INTerval LABoratory, Developments in Reliable Computing, T. Csendes, ed., 77-104, Kluwer, Dordrecht, 1999. http:// www.ti3.tuhh.de/rump/

