A Modified Verification Method for Linear Systems

Atsushi Minamihata¹, Kouta Sekine¹, Takeshi Ogita^{3,5}, Siegfried M. Rump⁴, Shin'ichi Oishi^{2,5}

¹ Graduate School of Fundamental Science and Engineering, Waseda University

² Department of Applied Mathematics, Faculty of Science and Engineering, Waseda University

3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan

³ School of Arts and Sciences, Tokyo Woman's Christian University 2–6–1 Zempukuji, Suginami-ku, Tokyo 167–8585, Japan

⁴ Institute for Reliable Computing, Hamburg University of Technology Schwarzenbergstraße 95, Hamburg 21071, Germany

⁵ JST, CREST

aminamihata@moegi.waseda.jp

Keywords: Verified Numerical Computations, Linear Systems

This talk is concerned with the problem of verifying the accuracy of approximate solutions of linear systems. Let \mathbb{R} be the set of real numbers. For $A \in \mathbb{R}^{n \times n}$, the comparison matrix of A is denoted by $\langle A \rangle$.

For a linear system

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}, \ b \in \mathbb{R}^n, \tag{1}$$

we can efficiently obtain a computed solution by some numerical algorithm. In general, however, we do not know how accurate the computed solution is. For this purpose, several verification methods have been proposed (cf. e.g. [1,2]).

In this talk we propose an efficient method of calculating a componentwise error bound of the computed solution of (1), which is based on the following Rump's theorem:

Theorem 1 (Rump [1, Theorem 2.1]). Let $A \in \mathbb{R}^{n \times n}$ and $b, \tilde{x} \in \mathbb{R}^n$ be given. Assume $v \in \mathbb{R}^n$ with $v > \mathbf{0}$ satisfies $u := \langle A \rangle v > \mathbf{0}$. Let $\langle A \rangle = D - E$ denote the splitting of $\langle A \rangle$ into the diagonal part D and the off-diagonal part -E, and define $w \in \mathbb{R}^n$ by

$$w_k := \max_{1 \le i \le n} \frac{G_{ik}}{u_i} \quad for \ 1 \le k \le n,$$

where $G := I - \langle A \rangle D^{-1} = ED^{-1} \ge O$. Then A is nonsingular, and

$$|A^{-1}b - \tilde{x}| \le (D^{-1} + vw^T)|b - A\tilde{x}|.$$
(2)

In particular, the method based on Theorem 1 is implemented in the routine verifylss in INTLAB Version 7 [3].

We modify Theorem 1 as follows:

Theorem 2. Let A, b, \tilde{x}, u, v, w be defined as in Theorem 1. Define $D_s := \text{diag}(s)$ where $s \in \mathbb{R}^n$ with

$$s_k := u_k w_k \quad \text{for } 1 \le k \le n.$$

Then

$$A^{-1}b - \tilde{x}| \le (D^{-1} + vw^T)(I + D_s)^{-1}|b - A\tilde{x}|.$$
(3)

Proof. From the definition of u and w, it holds

$$I - \langle A \rangle D^{-1} \le u w^T.$$

Since diag $(I - \langle A \rangle D^{-1}) = \mathbf{0}$, we have

$$I - \langle A \rangle D^{-1} + D_s \le u w^T$$

and

$$I + D_s \le \langle A \rangle D^{-1} + u w^T. \tag{4}$$

From the assumption, A is an H-matrix, so that $\langle A \rangle^{-1} \ge O$. Multiplying (4) from the left by $\langle A \rangle^{-1}$ yields

$$\langle A \rangle^{-1} (I + D_s) \le D^{-1} + \langle A \rangle^{-1} u w^T = D^{-1} + v w^T.$$

Since $(I + D_s)^{-1} \ge O$, we have

$$\langle A \rangle^{-1} \le (D^{-1} + vw^T)(I + D_s)^{-1}.$$
 (5)

Using $|(A)^{-1}| \leq \langle A \rangle^{-1}$ and (5),

$$|A^{-1}b - \tilde{x}| \leq |A^{-1}||b - A\tilde{x}| \leq \langle A \rangle^{-1}|b - A\tilde{x}|$$

$$\leq (D^{-1} + vw^T)(I + D_s)^{-1}|b - A\tilde{x}|,$$

which proves the theorem.

Theorem 2 always gives better bounds than Theorem 1 since
$$(I + D_s)^{-1} \leq I$$
. Numerical results will be shown to illustrate the efficiency of the proposed theorem. A generalization of Theorem 2 will be presented.

References:

- [1] S. M. RUMP, Accurate solution of dense linear systems, Part II: Algorithms using directed rounding, J. Comp. Appl. Math., 242 (2013), 185–212.
- [2] S. OISHI, S. M. RUMP, Fast verification of solutions of matrix equations, *Numer. Math.*, 90:4 (2002), 755–773.
- S. M. RUMP, INTLAB INTerval LABoratory, Developments in Reliable Computing, T. Csendes, ed., 77-104, Kluwer, Dordrecht, 1999. http:// www.ti3.tuhh.de/rump/