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This talk is concerned with the problem of verifying the accuracy of ap-
proximate solutions of linear systems. Let R be the set of real numbers. For
A ∈ Rn×n, the comparison matrix of A is denoted by ⟨A⟩.

For a linear system

Ax = b, A ∈ Rn×n, b ∈ Rn, (1)

we can efficiently obtain a computed solution by some numerical algorithm. In
general, however, we do not know how accurate the computed solution is. For
this purpose, several verification methods have been proposed (cf. e.g. [1,2]).

In this talk we propose an efficient method of calculating a componentwise
error bound of the computed solution of (1), which is based on the following
Rump’s theorem:

Theorem 1 (Rump [1, Theorem 2.1]). Let A ∈ Rn×n and b, x̃ ∈ Rn be given.
Assume v ∈ Rn with v > 0 satisfies u := ⟨A⟩v > 0. Let ⟨A⟩ = D − E denote
the splitting of ⟨A⟩ into the diagonal part D and the off-diagonal part −E, and
define w ∈ Rn by

wk := max
1≤i≤n

Gik

ui
for 1 ≤ k ≤ n,

where G := I − ⟨A⟩D−1 = ED−1 ≥ O. Then A is nonsingular, and

|A−1b− x̃| ≤ (D−1 + vwT )|b−Ax̃|. (2)

In particular, the method based on Theorem 1 is implemented in the routine
verifylss in INTLAB Version 7 [3].

We modify Theorem 1 as follows:



Theorem 2. Let A, b, x̃, u, v, w be defined as in Theorem 1. Define Ds :=
diag(s) where s ∈ Rn with

sk := ukwk for 1 ≤ k ≤ n.

Then

|A−1b− x̃| ≤ (D−1 + vwT )(I +Ds)
−1|b−Ax̃|. (3)

Proof. From the definition of u and w, it holds

I − ⟨A⟩D−1 ≤ uwT .

Since diag(I − ⟨A⟩D−1) = 0, we have

I − ⟨A⟩D−1 +Ds ≤ uwT

and
I +Ds ≤ ⟨A⟩D−1 + uwT . (4)

From the assumption, A is an H -matrix, so that ⟨A⟩−1 ≥ O. Multiplying (4)
from the left by ⟨A⟩−1 yields

⟨A⟩−1(I +Ds) ≤ D−1 + ⟨A⟩−1uwT = D−1 + vwT .

Since (I +Ds)
−1 ≥ O, we have

⟨A⟩−1 ≤ (D−1 + vwT )(I +Ds)
−1. (5)

Using |(A)−1| ≤ ⟨A⟩−1 and (5),

|A−1b− x̃| ≤ |A−1||b−Ax̃| ≤ ⟨A⟩−1|b−Ax̃|
≤ (D−1 + vwT )(I +Ds)

−1|b−Ax̃|,

which proves the theorem.

Theorem 2 always gives better bounds than Theorem 1 since (I +Ds)
−1 ≤

I. Numerical results will be shown to illustrate the efficiency of the proposed
theorem. A generalization of Theorem 2 will be presented.
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