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This talk is concerned with verification methods for systems of linear equa-
tions:

Ax = b, A ∈ Rn×n, b ∈ Rn. (1)

We do not assume special structures for A. The verification methods for systems
of linear equations (1) give existence to the exact solution and error bounds
between the exact solution and an approximate solution by using floating point
arithmetic defined by the IEEE 754 standard [1]. The aim of this talk is to
propose verification methods for systems of linear equations which are portable
and high precision, and its implementation for high performance computers. In
this talk, we introduce the method by using super computers (Fujitsu FX10 [2]).

Let I be the n×n identity matrix. Let x̃ be an approximate solution of (1).
To obtain an error bound of an approximate solution, the following inequality
is often-used [3]. If we can find R ∈ Rn×n such that

∥RA− I∥∞ < 1, (2)

then A−1 exists and

∥x̃−A−1b∥∞ ≤ ∥R(Ax̃− b)∥∞
1− ∥RA− I∥∞

. (3)

Usually, R is an approximate inverse of A. Many verified computations for (2)
and (3) use the switches of rounding modes defined by the IEEE 754 standard
[1]. However, for recent some of high performance computers like Graphics
Processing Units, super computers, etc., to control the rounding modes is diffi-
cult. Therefore, we propose verification methods for systems of linear systems
in rounding to nearest.

First, we improve the verification method [4] by using error estimates [5].
Since the verification method [4] use a priori error estimates of floating-point
arithmetic in rounding to nearest, it dose not need the switches of rounding
modes. It can work on a wide range of computational environments. Its a
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priori error estimates are based on traditional type estimates. We propose a
new method by using new error estimates developed by Rump [5].

Next, we introduce the verification method by using super computers. Es-
pecially, in case of using super computers, we consider large scale problems. n
is up to 105. If n is increase, it is known that the accuracy will be worse. In
addition, since our method is based on a priori error estimates, overestimation
occurs. Therefore, we obtain a good approximate solution by using iterative
refinement based on accurate dot product [6]. By using the accurate algorithm
for calculating dot product [6] with its error bound in twice the working preci-
sion, we get sharp error bounds of residual Ax̃− b. Since we apply the accurate
matrix multiplication [7], we improve adaptable range.

The details of our method and numerical experiments will be shown at the
presentation.
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