On the maximum relative error. when computing x^{n} in floating-point arithmetic

Stef Graillat ${ }^{1}$ and Vincent Lefèvre ${ }^{2}$ and Jean-Michel Muller ${ }^{2}$
${ }^{1}$ Université Pierre et Marie Curie, Paris France
${ }^{2}$ Laboratoire LIP, CNRS, ENS de Lyon, Inria and Université Claude Bernard, Lyon, France
jean-michel.muller@ens-lyon.fr

Keywords: Floating-Point Arithmetic, Rounding errors
We improve the usual relative error bound for the computation of x^{n} through iterated multiplications by x in binary, precision- p, floating-point arithmetic. More precisely, we analyze the following algorithm.

$$
\begin{aligned}
& y \leftarrow x \\
& \text { for } k=2 \text { to } n \text { do } \\
& y \leftarrow \operatorname{RN}(x \cdot y) \\
& \text { end for } \\
& \text { return }(y)
\end{aligned}
$$

where RN means "round to nearest" (that is, $\operatorname{RN}(x \cdot y)$ is the result of the floating point multiplication $\mathrm{x} * \mathrm{y}$ in round-to-nearest mode).

We show the following result:
Theorem 1. Assume $p \geq 5$ (which holds in all practical cases). If

$$
n \leq \sqrt{2^{1 / 3}-1} \cdot 2^{p / 2}
$$

then

$$
\left|\widehat{x}_{n}-x^{n}\right| \leq(n-1) \cdot u \cdot x^{n}
$$

The obtained relative error bound $(n-1) \cdot u$ is only slightly better than the usual one γ_{n-1}, but it is simpler. We also discuss the more general problem of computing the product of n terms.

References:

[1] Muller et al., Handbook of Floating-Point Arithmetic, Birkhauser, 2010.
[2] Graillat, Lefevre and Muller, On the maximum relative error when computing x^{n} in floating-point arithmetic, Technical report, 2013. Available at http://hal-ens-lyon.archives-ouvertes.fr/ensl-00945033

