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1 Elliptic problems

We briefly describe the basic principles for the numerical verification of solutions to
the following elliptic problems, see [2],[6] for detalils,

—Au f(x,u,0u), xeQ, (1)
u = 0 X€0Q,

whereQ is a bounded domain iR" (1 < n < 3), f is a nonlinear map We use the
homogeneous Sobolev spadé(Q)(z H(}) for the solution of (1). Also some appro-
priate assumptions are imposed on the rhajm order to treat the problem as the finite
procedure, we use a finite element subsygaaf H with mesh sizéh.

Denoting the inner product dr?(Q) by (-,-), we define theH}-projection: R € S,
for ¢ € H3, by

(D(p, D(Hﬁ(p)v DVh) = 07 VVh € S’] (2)

If Ap € L2(Q), then the following error estimates plays an essential role to bridge
between the infinite and finite dimensional, i.e., continuous and discrete, problems.

(T =Ph)@llz < C()[IAQ]| 2. 3)

Here,| stands for the identity ohl& andC(h) means a positive constant which can be
numerically determined such th@th) — 0 if h — 0. For eachp € L?(Q), we denote

a solutiong € H} of the Poisson equation+Ag = ¢ with homogeneous boundary
condition by @ = (—A)~1. Then, under some appropriate conditions for(1) is
rewritten as the fixed point equation of the form= F(u) with a compact magp =
(—A)"1f onH.

The following decomposion of the fixed point equation gives an essential principle
which enables us to treat the problem by finite procedure on computer.

Fhu = RF(u)
{ e = Rk “

Here, the first and second parts can be considered as equatyenid in the orthog-
onal complemen$: of H3, respectively.



Sequential iterative method A setU C H& which possibly includes a solution of
(4) is calleda candidate setf solutions. Usually, for the set$, C S, andU, C St,
the candidate séi is taken as) = U, @ U, . Then, a verification condition based on
Schauder’s fixed point theorem is given by

RF (U) cu
{('—F’h)F(U) c U ®)

The setUj, is taken to be a set of linear combinations of basis function$, iwith
interval coefficients, whil&J, a ball inSt with radiusa > 0.

Note that, it can be easily seen tifaF (U) is directly computed or enclosed for given

Un andU | by solving a linear system of equations with interval right-hand side using
some interval arithmetic approaches. On the other hdrdR},)F (U ) can be evaluated

as a positive real number by the use of constructive a priori error estimates (3) as
follows

||(|—Ph)F(U)HHgSC(h)SEUUDIIf(U)HLz (6)

Thus, the former condition in (5) is validated as the inclusion relations of corresponding
coefficient intervals, and the latter part can be confirmed by comparing two nonnegative
real numbers which correspond to the radii of balls. In the actual computation, some
iterative method is utilized for both part 8fF (U) and(l — R,)F(U).

Finite dimensional Newton’s method Note that the verifiaction condition (5) is not
applicable except that the concerned operé&tas retractive around the fixed point.
Therefore, in order to overcome this difficulty, we need some Newton-like method for
(4). Thus, we define the nonlinear operatarwith an approximate solutioty, by

Nh(U) := Phu— [Py — B (Tn)], H(Phu— RyF (),

whereA' (Gp) = (—A) 1 f/(Gh) and’ means the Krchet derivative of at,. Here, [P, —
PA'(Th) ], * denotes the inverse & of the restriction operatdgiPh — PhA' (Tn))|s,- The
existence of such a finite dimensional inverse operator can be validated by the usual
invertibility of the corresponding matrix. And we set

T = Ny(u)+ (1 —=R)F(u).

ThenT is considered as the Newton-like operator for the former part of (4) but the
simple iterative operator for the latter part. It can be seenuhkal (u) is equivalent to
u= F(u), and the verification condition is presented similar as before.

Infinite dimensional Newton’s mtheod By applying the verification principle to the
linearized equation for the original problem (1), we can also realize an infinite dimen-
sional Newton-like mtheod.
We now assume that the linearlized equatioti,as written as
ZLu:=—-Au+b-Ou+cu=y, inQ, @
u=0, onoQ.



Here assumé € W°(Q)", c€ L®(Q), ¢ € L3(Q). Letp be an approximate opera-
tor norm for.#~1, which can be computed as the corresponding matrix norm. Setting

. 1/2

the constants &ivp := [|divb| =), Cp:= (zi”:lnbi HZW(Q)) » Coi=cllie(q),
and letC; := CyCqivb +Cp, Co:=CpC¢, C3:=Cy+CyCc, Cs:=C,+C(h)C,
whereC, is a Poinca constant o8. Then, we have the following invertibility condi-
tion for .Z in (7).
Theorem 1.1. If

Kk = C(h)(pC3(C1+C2)C(h) +Ca) < 1, (8)
then the oprator? in (7) is invertible. Here, Ch) is the same constant {3).

By using this result we derive a verifiaction condition for the solution of the prob-
lem (1) to apply the infinite dimensional Newton-like method. On the other kind of
verification methods for elliptic problems, refer [4, 5] and so on.

2 Evolutional problems

We can extend the arguments in the previous section to the following nonlinear intial
boundary value problems of parabolic type.

%—Au = f(xtu), (xt)eQx],
u(x,t) = 0 (xt) € 0Q x J, ©)
u(x,0) = 0, xeqQ,

where x€ Q ¢ R®: abounded convex domairk J:= (0, T) C R: abounded interval
for a fixedT, andv € R a positive constant. We assume tlias a continuous map
from L2(J;H3(Q)) into L?(3;L2(Q)), and, for each bounded subkkin L2(J; H3(Q)),
the image otJ by f is also bounded ih?(J;L?(Q)).

By using an appropriate approximate solutighe H*(J;L2(Q)) NL?(3;H3(Q) N
H?(Q)) and settingi = w+ u‘f], the original problem (9) can be rewritten in the follow-
ing residual form

Zw=g(w) in QxJ, (10a)
w(x,t) =0 onodQ xJ, (10b)
w(x,0)=0 in Q, (10c)

9 —vA— f'(uk). Here,’(uf) stands for a Fechet derivative of at

=t

k
uk. And g(w) = f(x,t,w+uf, O(w+uk)) — % +vAuk — ' (uf)w.
In order to consider the existence of a solutwof (10), for anya > 0, we define the
candidate set by

where %4 :

Wa = {w € L*(J;H3(Q)); W22 (0)) < O} (11)



If we find a constarﬂ:ﬂfl satisfying

147 2 (2020 20m30@) < Cts (12)
then, we have

||$719(Wa)\|L2(J;Hg(Q)) <Cy-1 sup [l9W) |l 220
weWy

Therefore, by the Schauder fixed point theorem we obtain the following existential
condition of a solutiorw € W to (10),

Cg-1 sup [lg(W)||L2(g2(q)) < @- (13)
weWy

This clearly implies a Newton-type verification condition of solutions for the problem

9).

Note that usually% is written of the form

LBW= %w—vAer(b O)w+cw, (14)

whereb andc areL” functions onQ x J. Hence we now consider the linear problems:

Lw=q in QxJ, (15a)
{ w(x,t) =0 onodQ xJ, (15b)
w(x,0) =0 in Q, (15c)

where the right-hand sidg of (15a) means a given function inandt. Thus, it is
important and essential for our purpose to find a conﬁgph satisfying the following
a priori estimates of solutiow to (15)
||WH|_2(J;H§(Q)) < Cyaldllizgiza).
which also implies that (12) holds for this constént 1.
Thus, the method in the previous section can also, in principle, be applied to the

verification of solutions of this problem. In such applications, the simple linear problem
which corresponds to the Poisson equation in the elliptic case is as follows:

@—Atp =g (xt) e QxJ,
o(x,1) = 0 (x,t) € 0Q x J,
@(x,0) = 0, xeQ,

whereg is a known function. In [3], by using a full-discrete finite element approxima-
tion, we derived the constructive a priori error estimates of the form

<C(hk)[g 17

K
H(p % L2(3HE (@) L2(3L2(Q))



whereqqf is a full-discerete approximation for the solution of (16) with mesh dizes
space and in time. The method uses a full-discrete numerical scheme which is based
on an interpolation in time by using the fundamental solution for spatial discretization
of (16). It is shown that, if we takk = h?, the above constaft(h,k) can be numeri-
cally estimated a€(h,k) ~ O(h) as well as the corresponding estimates are order
o(h?).

Thus, we obtain the constructive estimates of the con§tgnt by the arguments in

[1]. We will show some nmerical examples for the computaio@gf 1 and verifica-

tion results for some prototype nonlinear problems in the talk.
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