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1 Elliptic problems

We briefly describe the basic principles for the numerical verification of solutions to
the following elliptic problems, see [2],[6] for details,{

−∆u = f (x,u,∇u), x∈ Ω,
u = 0 x∈ ∂Ω,

(1)

whereΩ is a bounded domain inRn (1 ≤ n ≤ 3), f is a nonlinear map．We use the
homogeneous Sobolev spaceH1

0(Ω)(≡ H1
0 ) for the solution of (1). Also some appro-

priate assumptions are imposed on the mapf . In order to treat the problem as the finite
procedure, we use a finite element subspaceSh of H1

0 with mesh sizeh.
Denoting the inner product onL2(Ω) by (·, ·), we define theH1

0 -projection:Phφ ∈ Sh

for φ ∈ H1
0 , by

(∇φ −∇(Phφ),∇vh) = 0, ∀vh ∈ Sh. (2)

If ∆φ ∈ L2(Ω), then the following error estimates plays an essential role to bridge
between the infinite and finite dimensional, i.e., continuous and discrete, problems.

||(I −Ph)φ ||H1
0
≤C(h)||∆φ ||L2. (3)

Here,I stands for the identity onH1
0 andC(h) means a positive constant which can be

numerically determined such thatC(h)→ 0 if h→ 0. For eachψ ∈ L2(Ω), we denote
a solutionφ ∈ H1

0 of the Poisson equation :−∆φ = ψ with homogeneous boundary
condition byφ ≡ (−∆)−1ψ. Then, under some appropriate conditions onf , (1) is
rewritten as the fixed point equation of the formu = F(u) with a compact mapF ≡
(−∆)−1 f onH1

0 .
The following decomposion of the fixed point equation gives an essential principle
which enables us to treat the problem by finite procedure on computer.{

Phu = PhF(u)
(I −Ph)u = (I −Ph)F(u)

(4)

Here, the first and second parts can be considered as equations inSh and in the orthog-
onal complementS⊥h of H1

0 , respectively.



Sequential iterative method A setU ⊂ H1
0 which possibly includes a solution of

(4) is calleda candidate setof solutions. Usually, for the setsUh ⊂ Sh andU⊥ ⊂ S⊥h ,
the candidate setU is taken asU =Uh⊕U⊥. Then, a verification condition based on
Schauder’s fixed point theorem is given by{

PhF(U) ⊂ Uh

(I −Ph)F(U) ⊂ U⊥
(5)

The setUh is taken to be a set of linear combinations of basis functions inSh with
interval coefficients, whileU⊥ a ball inS⊥h with radiusα ≥ 0.
Note that, it can be easily seen thatPhF(U) is directly computed or enclosed for given
Uh andU⊥ by solving a linear system of equations with interval right-hand side using
some interval arithmetic approaches. On the other hand,(I −Ph)F(U) can be evaluated
as a positive real number by the use of constructive a priori error estimates (3) as
follows

||(I −Ph)F(U)||H1
0
≤C(h)sup

u∈U
|| f (u)||L2. (6)

Thus, the former condition in (5) is validated as the inclusion relations of corresponding
coefficient intervals, and the latter part can be confirmed by comparing two nonnegative
real numbers which correspond to the radii of balls. In the actual computation, some
iterative method is utilized for both part ofPhF(U) and(I −Ph)F(U).

Finite dimensional Newton’s method Note that the verifiaction condition (5) is not
applicable except that the concerned operatorF is retractive around the fixed point.
Therefore, in order to overcome this difficulty, we need some Newton-like method for
(4). Thus, we define the nonlinear operatorNh with an approximate solution̂uh by

Nh(u) := Phu− [Ph−PhA′(ûh)]
−1
h (Phu−PhF(u)),

whereA′(ûh)≡ (−∆)−1 f ′(ûh) and′ means the Fŕechet derivative off at ûh. Here,[Ph−
PhA′(ûh)]

−1
h denotes the inverse onSh of the restriction operator(Ph−PhA′(ûh))|Sh. The

existence of such a finite dimensional inverse operator can be validated by the usual
invertibility of the corresponding matrix. And we set

T(u) := Nh(u)+(I −Ph)F(u).

ThenT is considered as the Newton-like operator for the former part of (4) but the
simple iterative operator for the latter part. It can be seen thatu= T(u) is equivalent to
u= F(u), and the verification condition is presented similar as before.

Infinite dimensional Newton’s mtheod By applying the verification principle to the
linearized equation for the original problem (1), we can also realize an infinite dimen-
sional Newton-like mtheod.
We now assume that the linearlized equation atûh is written as{

L u :=−∆u+b·∇u+cu= ψ, in Ω,

u= 0, on ∂Ω.
(7)



Here，assumeb∈W∞
1 (Ω)n, c∈ L∞(Ω), ψ ∈ L2(Ω)．Let ρ be an approximate opera-

tor norm forL −1, which can be computed as the corresponding matrix norm. Setting

the constants asCdivb := ∥divb∥L∞(Ω), Cb :=
(

∑n
i=1∥bi∥2

L∞(Ω)

)1/2
, Cc := ∥c∥L∞(Ω),

and letC1 := CpCdivb +Cb, C2 := CpCc, C3 := Cb +CpCc, C4 := Cb +C(h)Cc,
whereCp is a Poincaŕe constant onΩ. Then, we have the following invertibility condi-
tion for L in (7).

Theorem 1.1. If

κ ≡C(h)
(
ρC3(C1+C2)C(h)+C4

)
< 1, (8)

then the opratorL in (7) is invertible. Here, C(h) is the same constant in(3).

By using this result we derive a verifiaction condition for the solution of the prob-
lem (1) to apply the infinite dimensional Newton-like method. On the other kind of
verification methods for elliptic problems, refer [4, 5] and so on.

2 Evolutional problems

We can extend the arguments in the previous section to the following nonlinear intial
boundary value problems of parabolic type.

∂u
∂ t

−∆u = f (x, t,u), (x, t) ∈ Ω×J,

u(x, t) = 0, (x, t) ∈ ∂Ω×J,
u(x,0) = 0, x∈ Ω,

(9)

where x∈Ω⊂Rd : a bounded convex domain,t ∈ J := (0, T)⊂R : a bounded interval
for a fixedT, andν ∈ R: a positive constant. We assume thatf is a continuous map
from L2(J;H1

0(Ω)) into L2(J;L2(Ω)), and, for each bounded subsetU in L2(J;H1
0(Ω)),

the image ofU by f is also bounded inL2(J;L2(Ω)).
By using an appropriate approximate solutionuk

h ∈ H1(J;L2(Ω))∩L2(J;H1
0(Ω)∩

H2(Ω)) and settingu≡ w+uk
h, the original problem (9) can be rewritten in the follow-

ing residual form 
Ltw= g(w) in Ω×J, (10a)

w(x, t) = 0 on ∂Ω×J, (10b)

w(x,0) = 0 in Ω, (10c)

where Lt := ∂
∂ t −ν∆− f ′(uk

h). Here, f ′(uk
h) stands for a Fŕechet derivative off at

uk
h. And g(w)≡ f (x, t,w+uk

h,∇(w+uk
h))−

∂uk
h

∂ t +ν∆uk
h− f ′(uk

h)w.
In order to consider the existence of a solutionw of (10), for anyα > 0, we define the
candidate set by

Wα := {w∈ L2(J;H1
0(Ω)); ∥w∥L2(J;H1

0 (Ω)) ≤ α}. (11)



If we find a constantCLt
−1 satisfying

∥Lt
−1∥L (L2(J;L2(Ω)),L2(J;H1

0(Ω))) ≤CLt
−1, (12)

then, we have

∥Lt
−1g(Wα)∥L2(J;H1

0 (Ω)) ≤CLt
−1 sup

w∈Wα
∥g(w)∥L2(J;L2(Ω)).

Therefore, by the Schauder fixed point theorem we obtain the following existential
condition of a solutionw∈Wα to (10),

CLt
−1 sup

w∈Wα
∥g(w)∥L2(J;L2(Ω)) ≤ α. (13)

This clearly implies a Newton-type verification condition of solutions for the problem
(9).

Note that usuallyLt is written of the form

Ltw≡ ∂
∂ t

w−ν∆w+(b·∇)w+cw, (14)

whereb andc areL∞ functions onΩ×J. Hence we now consider the linear problems:
Ltw= q in Ω×J, (15a)

w(x, t) = 0 on ∂Ω×J, (15b)

w(x,0) = 0 in Ω, (15c)

where the right-hand sideq of (15a) means a given function inx and t. Thus, it is
important and essential for our purpose to find a constantCLt

−1 satisfying the following
a priori estimates of solutionw to (15)

∥w∥L2(J;H1
0 (Ω)) ≤ CLt

−1∥q∥L2(J;L2(Ω)),

which also implies that (12) holds for this constantCLt
−1.

Thus, the method in the previous section can also, in principle, be applied to the
verification of solutions of this problem. In such applications, the simple linear problem
which corresponds to the Poisson equation in the elliptic case is as follows:

∂φ
∂ t

−∆φ = g (x, t) ∈ Ω×J,

φ(x, t) = 0, (x, t) ∈ ∂Ω×J,
φ(x,0) = 0, x∈ Ω,

(16)

whereg is a known function. In [3], by using a full-discrete finite element approxima-
tion, we derived the constructive a priori error estimates of the form∥∥∥φ −φ k

h

∥∥∥
L2
(

J;H1
0 (Ω)

) ≤C(h,k)∥g∥
L2
(

J;L2(Ω)
) , (17)



whereφ k
h is a full-discerete approximation for the solution of (16) with mesh sizesh in

space andk in time. The method uses a full-discrete numerical scheme which is based
on an interpolation in time by using the fundamental solution for spatial discretization
of (16). It is shown that, if we takek = h2, the above constantC(h,k) can be numeri-
cally estimated asC(h,k) ≈ O(h) as well as the correspondingL2 estimates are order
O(h2).
Thus, we obtain the constructive estimates of the constantCLt

−1 by the arguments in
[1]. We will show some nmerical examples for the computaion ofCLt

−1 and verifica-
tion results for some prototype nonlinear problems in the talk.
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