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To solve linear systems is ubiquitous since it is one of the basic and significant
tasks in scientific computing. Floating-point arithmetic is widely used for this
purpose. Since it uses finite precision arithmetic/numbers, rounding errors are
included in computed results. To guarantee the accuracy of the results, there are
methods so-called verified numerical computations based on interval arithmetic.
Excellent overviews can be found in [6] and references cited therein.

Let A be a real n×nmatrix, and b a real n-vector. Let κ(A) = ∥A∥·∥A−1∥ be
the condition number of A, where ∥·∥ stands for some matrix norm. Throughout
the talk we assume for simplicity that IEEE standard 754 binary64 (formerly,
double precision) floating-point arithmetic is used. Let u denote the rounding
error unit of floating-point arithmetic, which is equal to 2−53.

We are concerned with practically proving the nonsingularity of A (if A
is nonsingular) and then obtaining a forward error bound of an approximate
solution x̃ of a linear system Ax = b to the exact solution x∗ = A−1b such that
|x∗

i − x̃i| ≤ ϵi for 1 ≤ i ≤ n by the use of verified numerical computations. For
this purpose estimating ∥A−1∥ is essential for some matrix norm.

For dense linear systems there are several efficient methods for this purpose
(e.g. [1,4]). For sparse systems things are much different; Fast and efficient
verification for large sparse linear systems is still difficult in terms of both com-
putational complexity and memory requirements except a few cases where it
is known in advance or to be proved that A belongs to a certain special ma-
trix class, e.g. diagonally dominant and M -matrix (see, e.g. [3]). Moreover, a
super-fast verification method proposed in [7] is applied to the case where A is
sparse, symmetric and positive definite. However, to our knowledge, few meth-
ods are known in case of A being a general sparse matrix except methods by



Rump [5]. Thus the verification for sparse systems of linear (interval) equa-
tions is known as one of the important open problems posed by Neumaier in
Grand Challenges and Scientific Standards in Interval Analysis [2]. Moreover,
Rump [6] formulated the following challenge:

Derive a verification algorithm which computes an inclusion of the
solution of a linear system with a general symmetric sparse matrix
of dimension 10000 with condition number 1010 in IEEE 754 double
precision, and which is no more than 10 times slower than the best
numerical algorithm for that problem.

In the present talk we try to partially solve the problem for symmetric but
not necessarily positive definite input matrices, and also to a certain extent for
nonsymmetric matrices. Namely, we assume that A is large, e.g. n ≥ 10000,
and sparse, possibly κ(A) > 1/

√
u.

We survey some existing verification methods for sparse linear systems. After
that, we propose new verification methods. Numerical results are also presented.
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