Computer assisted proof for existence of solutions to a system of elliptic partial differential equations

Kouta Sekine ${ }^{1}$, Akitoshi Takayasu ${ }^{2}$ and Shin'ichi Oishi ${ }^{2}{ }^{2,3}$
${ }^{1}$ Graduate School of Fundamental Science and Engineering, Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
${ }^{2}$ Department of Applied Mathematics, Faculty of Science and Engineering, Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
${ }^{3}$ JST, CREST
s115100710@akane.waseda.jp

Keywords: Computer assisted proof, FitzHugh-Nagumo model

1 Introduction

We are concerned with a computer-assisted proof method for existence and local uniqueness of solutions to elliptic systems:

$$
\begin{cases}-\varepsilon^{2} \Delta u=f(u)-\delta v & \text { in } \Omega, \tag{1}\\ -\Delta v=u-\gamma v & \text { in } \Omega, \\ u=v=0 & \text { on } \partial \Omega .\end{cases}
$$

Here, Ω is a bounded polygonal domain with arbitrary shape in $\mathbb{R}^{2} . \varepsilon \neq 0, \gamma$ and δ are real parameters. A mapping $f: H_{0}^{1}(\Omega) \rightarrow L^{2}(\Omega)$ is assumed to be Fréchet differentiable.

The system (1) is derived from the FitzHugh-Nagumo model. The original one-dimensional parabolic differential equation, which is called FitzHughNagumo equation, was derived to serve as a prototype simplification of nerve conduction equations. The system (1) has been well studied from theoretical and numerical sides. A numerical verification theory for (1) on bounded convex domain has been proposed by Y. Watanabe [1].

The aim of this talk is to treat a numerical verification method of (1) on bounded nonconvex domains using Plum's Newton-Kantorovich like theorem [2]. On the nonconvex domain, calculating residual norm is one of the most important tasks because exact solutions u^{*} and v^{*} of (1) do not have H^{2}-regularity, respectively. In [3], A. Takayasu, X. Liu and S. Oishi have presented how to derive a residual norm using the Raviart-Thomas mixed finite element on a bounded polygonal domain. In this talk, we present the method of calculating for residual norm including a solution operator based on the Raviart-Thomas mixed finite element. Detailed proofs will be presented.

2 Numerical result

Let us consider the following Dirichlet boundary value problem of a system of nonlinear elliptic partial differential equations:

$$
\begin{cases}-\Delta u=100\left(u-u^{3}-v\right) & \text { in } \Omega, \tag{2}\\ -\Delta v=u+1.2 v & \text { in } \Omega, \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is is a bounded nonconvex polygonal domain whose vertices are given by

$$
\{(0,0),(0.2,0),(0.2,0.4),(0.8,0.4),(0.8,0),(1,0),(1,0.5),(0.5,1),(0.1,0)\}
$$

In Figure 1, we show approximate solutions. Verification result for (2) on Ω are given in Table 1. From Table 1, we succeed to prove the existence and local uniqueness of solutions which are located in neighborhood of these approximate solutions.

Figure 1: Approximate solution \hat{u} (left) and \hat{v} (right) of (2).

Table 1: Verification results.

Residual norm	$\left\\|u^{*}-\hat{u}\right\\|_{H_{0}^{1}}$	$\left\\|v^{*}-\hat{v}\right\\|_{H_{0}^{1}}$
1.244×10^{-2}	3.210×10^{-2}	9.060×10^{-4}

References:

[1] Y. Watamabe, A numerical verification method for two-coupled elliptic partial differential equations, DMV Jahresbericht:, JB.110, Heft 1, pp. 1954, 2008.
[2] M. Plum, Existence and Multiplicity Proofs for Semilinear Elliptic Boundary Value Problems by Computer Assistance, Japan J. Indust. Appl. Math., Vol.26, pp. 419-442, 2009.
[3] A. Takayasu, X. Liu, and S. Oishi, Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains, NOLTA, Vol.4, pp. 24-61, 2013.

