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1 Introduction

We are concerned with a computer-assisted proof method for existence and local
uniqueness of solutions to elliptic systems:

—&2Au = f(u) —dv in Q,
—Av=u— v in 0, (1)
u=v=0 on 0N).

Here, Q is a bounded polygonal domain with arbitrary shape in R2. & # 0, ~
and § are real parameters. A mapping f : H}(Q) — L?*() is assumed to be
Fréchet differentiable.

The system (1) is derived from the FitzHugh-Nagumo model. The origi-
nal one-dimensional parabolic differential equation, which is called FitzHugh-
Nagumo equation, was derived to serve as a prototype simplification of nerve
conduction equations. The system (1) has been well studied from theoretical
and numerical sides. A numerical verification theory for (1) on bounded convex
domain has been proposed by Y. Watanabe [1].

The aim of this talk is to treat a numerical verification method of (1) on
bounded nonconvex domains using Plum’s Newton-Kantorovich like theorem
[2]. On the nonconvex domain, calculating residual norm is one of the most im-
portant tasks because exact solutions u* and v* of (1) do not have H2-regularity,
respectively. In [3], A. Takayasu, X. Liu and S. Oishi have presented how to
derive a residual norm using the Raviart-Thomas mixed finite element on a
bounded polygonal domain. In this talk, we present the method of calculating
for residual norm including a solution operator based on the Raviart-Thomas
mixed finite element. Detailed proofs will be presented.



2 Numerical result

Let us consider the following Dirichlet boundary value problem of a system of
nonlinear elliptic partial differential equations:

—Au =100(u —u3 —v) inQ,
—Av=u+12v in Q, (2)
u=v=0 on 0%,

where (2 is is a bounded nonconvex polygonal domain whose vertices are given
by

{(0,0), (0.2,0), (0.2,0.4), (0.8,0.4), (0.8,0), (1,0), (1,0.5), (0.5,1), (0.1,0) }.

In Figure 1, we show approximate solutions. Verification result for (2) on 2 are
given in Table 1. From Table 1, we succeed to prove the existence and local
uniqueness of solutions which are located in neighborhood of these approximate
solutions.
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Figure 1: Approximate solution @ (left) and ¢ (right) of (2).

Table 1: Verification results.
Residual norm [u™ — 11||Hé [o* — ﬁHHé

1.244 x 10°2  3.210 x 102 9.060 x 10~ %
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