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Let Ω ⊂ R2 be a bounded polygonal domain. In this talk, we consider the
following nonlinear heat equations of the form: ∂tu = ∆u + f(u) in (0,∞) × Ω,

u|∂Ω = 0 in (0,∞),
u(0, x) = u0(x), in Ω,

(1)

where f : L∞((0,∞);H1
0 (Ω)) → L∞((0,∞);L2(Ω)) be a nonlinear mapping.

We assume the Fréchet differentiable of f with respect to u on the spatial
direction. Furthermore, let u0 ∈ D(∆) be a given initial function. We will
introduce a method of verified computations for the equation (1). Our method
is based on an approximate solution that is numerically calculated by FEM and
Backward Euler scheme [1,2,3]. Let n ∈ N be a fixed natural number. We
divide the time: 0 = t0 < t1 < · · · < tn < ∞. For k = 1, 2, ..., n, we define
Tk = (tk−1, tk] and T =

∪
Tk. We can compute ûk ≈ u(tk) using the scheme

established in [3]. Then we construct an approximate solution of (1), which is
denoted by ω(t) ∈ L∞(T ; H1

0 (Ω)):

ω(t) :=
n∑

k=1

ûkφk(t), t ∈ T,



where φk(t) is piecewise linear Lagrange basis on each Tk defined by

φk(t) :=



t − tk−1

tk − tk−1
, t ∈ Tk,

tk+1 − t

tk+1 − tk
, t ∈ Tk+1,

0, otherwise.

In this part, we introduce how to verify a computable error bound ρ of

‖u − ω‖L∞(T ;H1
0 (Ω)) ≤ ρ.

Namely, the existence and local uniqueness of u(t) is shown in the ball:

B(ω, ρ) := {v ∈ L∞(T ; H1
0 (Ω)) : ‖v − ω‖L∞(T ;H1

0 (Ω)) ≤ ρ}.

The feature of our method is to use ideal approximation: ū(t) ∈ W 1,1(T ; H1
0 (Ω))

defined by

ū(t) :=
n∑

k=1

ukφk(t), t ∈ T,

where uk ∈ V satisfies

τ−1
k (uk − uk−1, v)L2 + (∇uk,∇v)L2 = (f(uk), v)L2 , ∀v ∈ V.

Since W 1,1(T ; H1
0 (Ω)) ↪→ L∞(T ; H1

0 (Ω)), we have

‖u(t) − ω(t)‖L∞(T ;H1
0 (Ω))

= ‖u(t) − ū(t) + ū(t) − ω(t)‖L∞(T ;H1
0 (Ω))

≤ ‖u(t) − ū(t)‖L∞(T ;H1
0 (Ω)) + ‖ū(t) − ω(t)‖L∞(T ;H1

0 (Ω))

Then our method is divided into two parts. First, we rigorously construct the
ideal approximation ū(t) on the basis of ω(t) using the framework of verified
computations for elliptic equations. Next, the existence and local uniqueness of
u(t) is validated with computer-assistance depending on semigroup theory.

We first sketch our method briefly and explain how to construct the ideal
approximation ū(t) rigorously in the part I. In part II, on the basis of Banach’s
fixed point theorem, the existence and local uniqueness of u(t) is proved via
semigroup theory.
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