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To derive stationary solutions to the Allen-Cahn equation, we try to solve
the following equation:{ −ε2∆u = u− u3 inΩ,

∂u

∂n
= 0 on∂Ω,

(1)

where ε is a given positive number and Ω is a square domain (0, 1)
2
. The Allen-

Cahn equation has various solutions, which form attractive patterns, especially
when ε is small. For example, the following Fig. 1 shows some solutions in the
case of ε = 0.03 (this is just a mere part).

Fig. 1: Some solutions to (1) composed by sparse basis with ϵ = 0.03.



Here, we set V = H1(Ω) and denote the dual space of V by V ∗. Defining
operator F : V → V ∗ by

⟨F (u) , v⟩ := (∇u,∇v)L2 − ε−2
(
u− u3, v

)
L2 ,∀v ∈ V,

the equation (1) can be transformed into the equation

F(u) = 0 in V ∗.

We derived the approximate solutions to this equation with spectral method and
verified these solutions using Newton-Kantorovich’s theorem (the verification
method with this theorem summarized in [1]). One of the most important thing
for verification is how to estimate the norm of inverse of linearized operator
∥F ′ [û]

−1 ∥, where û ∈ V is an approximate solution and F ′ [û] is the Fréchet
derivative of F at û. We estimated the operator norm using the theorem in
[2] based on Liu-Oishi’s theorem [3] which is an effective theorem to evaluate
eigenvalues of the Laplace operator on arbitrary polygonal domains.

Since a small εmakes solutions to (1) singular, a more accurate basis becomes
necessary to obtain an appropriate approximate solution for small ε. Of course,
numerical verification also becomes difficult when ε is small at least using the
usual basis.

We observed that there are many approximate solutions which may have not
specific frequency components periodically (we call this type of solution “sparse
solution”). Therefore, we can fast derive and verify an approximation of sparse
solutions by removing the basis functions corresponding to the frequency compo-
nents expected that the solutions do not have (we call this type of basis “sparse
basis”). Unfortunately, there is no evidence that an appropriate approximate
solution is obtained using sparse basis. Indeed, approximate solutions which are
not obtained with the usual basis are often obtained a with sparse basis in our
experience. For this reason, verification for solution’s existence is indispensable
when we use sparse basis. In Fig. 1, some verified solutions composed by sparse
basis are displayed.

In this talk, a consideration about behavior of solutions to (1) with numerical
verification also will be performed.
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