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Consider the Navier-Stokes equations:

ut + uux + vuy =ν∆u− 1

ρ
px + γ sin

(πy
b

)
, (1)

vt + uvx + vvy =ν∆v − 1

ρ
py, (2)

ux + vy =0, (3)

where (u, v), ρ, p and ν are velocity vector, mass density, pressure and kinematic
viscosity, respectively and γ is a constant representing the strength of the sinu-
soidal outer force. Also ∗ξ := ∂/∂ξ(ξ = t, x, y) and ∆ := ∂2/∂x2 + ∂2/∂y2. The
flow region is a rectangle [−a, a]× [−b, b] and the periodic boundary conditions
are imposed in both directions. The aspect ratio is denoted by α := b/a.

The equations (1–3) describe the Navier-Stokes flows in a two-dimensional
flat torus under a special driving force proposed by Kolmogorov [1], [2] and
have a basic solution which is written as (u, v, p) = (k sin(πy/b), 0, d), where
k := b2γ/(π2ν) and d is any constant. It is known that non-trivial solutions
bifurcate from the basic solution at a certain Reynolds number, which is de-
fined below, if and only if 0 < α < 1 [1]. Okamoto-Shoji [2] computed numeri-
cally bifurcation diagrams with the Reynolds number as a bifurcation parameter
varying the aspect ratio as a splitting parameter. They also strongly suggested
stability of the first bifurcating solutions for all 0 < α < 1. Nagatou [3] took an
another approach to this stability problem by employing the theory of verified
computation and showed that the stability of the first bifurcating solutions is
mathematical rigorously assured for the cases of α = 0.4, 0.7 and 0.8.

In the previous paper [4], we proposed a method to prove the existence and
the local uniqueness of the steady-state solutions of the Navier-Stokes equations
(1–3) for a given Reynolds number and aspect ratio by a computer-assisted proof
with some verified results. It was also the first theoretical results to the non-
trivial solutions of the equations (1–3).

The aim of this lecture is to apply our another verification method: FN-
Int [5] to prove the existence of the steady-state solutions of problem (1–3).

Introducing the stream function ϕ satisfying u = ϕy and v = −ϕx so that
ux + vy = 0, the equations (1–3) can be rewritten as

(∆ϕ)t − ν∆2ϕ− J(ϕ,∆ϕ) =
γπ

b
cos

(πy
b

)
(4)



by cross-differentiating equations (1) and (2) and eliminating the pressure p.
Here J is a bilinear form defined by

J(u, v) := uxvy − uyvx. (5)

The equation (4) is nondimensionalized by using change of variables

(x′, y′) =
(πx
b
,
πy

b

)
, t′ =

γb

νπ
t, ϕ′(t′, x′, y′) =

νπ3

γb3
ϕ(t, x, y)

and the Reynolds number R :=
γb3

ν2π3
. After dropping the primes, an equation

(∆ϕ)t −
1

R
∆2ϕ− J(ϕ,∆ϕ) =

1

R
cos(y) (6)

is obtained.
Now let a rectangle region Tα be

Tα :=
(
−π
α
,
π

α

)
× (−π, π)

with aspect ratio 0 < α < 1. We shall find steady-state solutions on Tα, where
(∆ϕ)t is equated to 0 in equation (6) in the region Tα, namely consider the
following nonlinear problem:

∆2ϕ = −RJ(ϕ,∆ϕ)− cos(y) in Tα. (7)

Assume that the stream function ϕ is periodic in x and y, and the symmetric
condition ϕ(x, y) = ϕ(−x,−y) [3] as well as the normalization

∫
Ω
ψ dxdy = 0.

Then the equation (7) has a trivial solution ϕ = − cos(y) for any R > 0. We
will verify the existence of non-trivial solutions by a computer.

¿From the assumptions of ψ imposed above, we define function space Xk

(k ≥ 0) by the closure inHk(Tα) of the linear hull of all functions cos(mαx+ny)
(m ∈ N0, n ∈ Z, (m,n) ̸= (0, 0)). Especially we define

X := X3.

For each ψ ∈ Xk can be represented by

ψ =
∑

(m,n)∈Q

Amn cos(mαx+ ny), Amn ∈ R,

where

Q :=

{
(m,n) ∈ Z× Z

∣∣∣∣ “m = 0 and 1 ≤ n ≤ ∞′′ or
“1 ≤ m ≤ ∞ and −∞ ≤ n ≤ ∞′′

}
. (8)

Let XN be the finite-dimensional subspace of X, which depends on a non-
negative integer parameter N , defined by

XN :=

 ∑
(m,n)∈QN

Amn cos(mαx+ ny) | Amn ∈ R

 , (9)



where

QN :=

{
(m,n) ∈ Z× Z

∣∣∣∣ “m = 0 and 1 ≤ n ≤ N ′′ or
“1 ≤ m ≤ N and −N ≤ n ≤ N ′′

}
. (10)

Define the projection X → XN by the N -th truncation of Fourier expan-
sion. Note that by the orthogonality of the basis PN coinsides with usual H2

0 -
projection:

(∆(ψ − PNψ),∆ψN )L2 = 0, ∀ψN ∈ XN . (11)

For each g ∈ X0 let ξ ∈ X4 the solution of ∆2ξ = g, then an a priori error
estimate:

∥ξ − PNξ∥X ≤ C5∥g∥L2

holds, where

C5 =
1

α(N + 1)
. (12)

Now for fixed approximate solution ϕN ∈ XN of (7), setting

ϕ = ϕN + ψ, (13)

and substituting (13) to (7), we obtain a residual equation

∆2ψ = −R J(ϕN + ψ,∆ϕN +∆ψ)− cos(y)−∆2ϕN in Ω. (14)

Denote the right hand side of (14) by

f(ψ) := −R J(ϕN + ψ,∆ϕN +∆ψ)− cos(y)−∆2ϕN , (15)

f : X → X0 is continuous and maps any bounded set of X to a bounded set of
X0.

Moreover, for each g ∈ X0, ∆2ξ = g has a unique solution ξ ∈ X4. By
denoting this mapping with embedding X4 ↪→ X by

∆−2 : X0 −→ X,

and
F := ∆−2f : X −→ X,

F becames compact operator and problem (14) is equivalent to a fixed-point
equation

ψ = F (ψ) (16)

in X. Therefore we can apply our verification algorithm FN-Int [5]. We will
report on some comparisons for computer-assisted proofs and show the effec-
tiveness of FN-Int in the Kolmogorov problem (7).
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