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1 Previous works

Poincaré map is a general tool to treat limit cycles in dynamical systems. In or-
der to prove existence of a limit cycle by validated computation, Zgliczyński ver-
ified existence of a fixed point of a Poincaré map using a fixed point theorem[5].
However it was not an easy work to specify ’first return time’ Ts, a time period
between an initial point x0 on the Poincaré section Γ and x1 := φ(Ts,x0) ∈ Γ,
where φ(t,x0) denotes a point on the trajectory from x0 at time t. Of course one
have to verify that there is no point φ(t,x0) ∈ Γ for any t ∈ (0, Ts). Zgliczyński
proposed a way to handle the situation and showed numerical examples to ap-
peal effectiveness of his method.

Hereafter we propose another way in which one has not to construct a
Poincaré map any longer.

2 Problem

We treat an autonomous dynamical system described by an ordinary differential
equation as follows.

du

dt
= f(u), (1)

where u is a vector function in D ⊂ Rn and f(u) is a mapping from D to Rn,
which is differentiable with respect to u.

Suppose that some approximate computation suggests that the above system
may have a periodic orbit with an initial value ũ0 and a time period T̃ , and such
initial values are not distributed continuously. Our aim is to verify existence of
a limit cycle including a point within a neighborhood of ũ0.

We translate the axes such that ũ0 should be an origin of new axes, and take
a plane Γ with its unit normal vector nΓ. The plane Γ should include the new
origin and may play a roll of Poincaré section.

3 Our first idea

Our first idea is using a projection Pw which maps a point u to a point w on Γ
such that the vector u−w should be parallel to the normal nΓ. We extend the



phase space Rn to Rn+1 with z = (t,u)T .
Let z0 = (T0,w0)

T be a pair of an approximate time period T0 of a limit cycle
and an approximate initial point w0 ∈ Γ. Calculate a new approximate period
T1 by some Newton-like method using T0 and w0, and put w1 := φ(T1,w0).
Define an operator Q as an operator on Rn+1 which maps z0 = (T0,w0)

T to
z1 = (T1,w1)

T . One may expect that an iterative method might reach a fixed
point of a Poincaré map applying Newton type iteration to an operator I −Q,
where I is the identity operator. But this is not true since the Jacobi matrix
of I −Q has an eigenvalue almost equal to 0. In order to handle this situation,
we introduce an operator PΓ which maps z = (t,u)T to PΓz = (t, Pwu)

T and
apply a Newton type iteration to I − PΓQ.

This device works well since the Jacobi matrix of I − PΓQ has no zero-
eigenvalue in many cases. We published a paper on our method in Japanese[1]
together with numerical verification process and some numerical examples.

Note that we do not construct any Poincaré map and do not suffer from
computation of the first return times.

4 Revision

Professor Matsuo in Tokyo University and his student Kaigaishi pointed out
that our method can be simplified and the simplified version concerns Newton-
Raphson-Mees method[3] which is known as a useful tool to detect periodic
orbits [2]. They says Newton-Raphson-Mees method can be considered as a
variation of our method.

We omit the details of how to simplify our method, which will be explained
in our talk. Hereafter we just describe the simplified version.

Let H be an operator from Rn+1 to Rn for z = (t,w)T as follows.

H(z) = φ(t,w)−w.

Note that a zero point z∗ = (T ∗,w∗)T of H, namely H(z∗) = 0, should be a
fixed point of a Poincaré map. Therefore if we verify that there is a zero point of
the operator H within some small area ([T ], [w])T , then it is proven that there
is a closed orbit including a point in [w] with a time period T ∈ [T ]. Here the
square brackets [·] denote interval values.

To find a zero point of H we need an additional condition, and adopt

nT
Γφ(T

∗,w∗) = 0, (2)

which means that we will seek a zero point on the plane Γ.
Summing up the above, we define the operator K as follows.

K(z) =

(
nT
Γφ(t,w)
H(z)

)
,

and we will solve the equation

K(z) = 0



with validated computation. In order to apply a Newton type iteration, Jacobi
matrix DK of the operator K is necessary. Note that DK is simply represented
as

DK(z) =

(
0 nT

Γ

f(z) Dwφ(t,w)

)
,

where Dwφ(t,w) denotes Jacobi matrix of φ(t,w) with respect to w.

5 Newton Operators

We use two kinds of Newton type operators N1 and N2 to find zeros of the
operator K. Let [T ] be an interval value of the time period T , [w] be an interval
vector which contains points on the plane Γ, and define [z] = ([T ], [w])T with
its center vector ẑ.

The operator N1 is defined for the interval Newton method as follows.

N1([z]) = ẑ−DK([z])−1K(ẑ).

The operator N2 is defined for the quasi Newton method as follows.

N2([z]) = [z]−DK−1
a K([z]),

where DKa denotes an approximation to DK(z̃) for z̃ = (T̃ , ũ)T (Note that we
put ũ = 0 by translation of axes).

One may consider that the operator N2 has an advantage over N1 since N2

has no interval matrix. However, we have to point out that subdistributive
law for interval arithmetic may cause too much expansion on the radius of the
interval value [z]−DK−1

a K([z]). To avoid such expansion, the mean value form
should be applied to the interval, and we have

N2(z) = DK−1
a {DKaẑ−K(ẑ) + (DKa −DK([z]))([z]− ẑ)}.

Then N2 also has an interval matrix. There is a possibility that N2 still has
some advantage since it does not need the inverse of the interval matrix.

6 Verification of zero points

Take an interval vector [Z] = ([T ], [W])T with a small radius, where [W] ⊂ Γ.
In many cases [Z] includes an approximate zero point (T̃ ,0)T . We iterate the
following steps for Ni, i = 1 or i = 2.

(1) Check whether Ni([Z]) ⊂ [Z] or not. If it holds then Brouwer’s fixed point
theorem guarantees the existence of a fixed point of Ni within [Z], which
is a zero of the operator K.



(2) If it does not hold, we calculate a new candidate as

[Z] := (1 + ε)Ni([Z])− εNi([Z]),

with a given small positive ε, and iterate furthermore.

Numerical experiments will be shown in our talk.

7 Remarks

• We have to compute φ([T ], [W]) by validated computation with interval
arithmetic. Integration is carried out using Lohner method[4].

• The Jacobi matrix DK([Z]) includes the Jacobi matrix Dwφ([T ], [W]),
which should be computed by validated computation. Integration is also
carried out using Lohner method, and there is an efficient way to com-
pute it together with φ([T ], [W]) simultaneously. This is described by
Zgliczyński in [5].

• The advantage of our method is not to construct any Poincaré map, and
not to confirm the first return times.

• Thanks to the advice from Professor Matsuo and his student Kaigaishi,
our method turned to be given a very simple description and to be easy
to understand. Use it!
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