Accurate Matrix Multiplication with Multiple Floating-point Numbers

Katsuhisa Ozaki Takeshi Ogita’, Siegfried M. Rump’, Shin’ichi Oishi

1 Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
i CREST, Japan Science and Technology Agency (JST)
x Institute for Reliable Computing, Hamburg University of Technology
Email: k. ozaki@aoni.waseda.jp

Abstract—This paper is concerned with an accuraterelop a fast and accurate algorithm of calculating dot prod-
computation of matrix multiplication, where componentaict. Next, we extend it to a fast implementation for accurate
of matrices are represented by summation of floating-poimbatrix multiplication, whose results achieve faithful round-
numbers. Recently, an accurate summation algorithm is dieg. Finally, we present some numerical results to confirm
veloped by the latter three of the authors. In this paper, it isn dfectiveness of our algorithm.
specialized to dot product. Using this, a fast implementa-
tion of accurate matrix multiplication is discussed. Finallyp muyltiple floating-point number
some numerical results are presented to confirm flez-e
tiveness of the proposed algorithm. In this section, we explain how we represent multi-
precision number. First, we state the notation used through-
out this paper. LeF be a set of floating-point numbers. Let
fl(- - -) be the result of a floating-point computations. Let

In this paper, we are concerned with the accurate corR€ the roundf unit (especiallyu = 27°% in double preci-

1. Introduction

putation of matrix multiplication sion defined in IEEE standard 754).
A normalized double precision floating-point humber
C=AB AcR™P BeRP" defined by IEEE 754 has 53 mantissa bits. For example,

if there is a big diference in the order of magnitude be-

Fast implementations of multi-precision arithmetic havéween two positive floating-point numbessand b with
frequently been discussed and there are many software 2=*a ~ b, the result of fla + b) loses about lower 40
braries for that purpose. However, most of such libraries daits of b. To overcome such problems, we represent a
not guarantee an accuracy of the result because a problemlti-precision number as an additive form of floating-
may be arbitrary ill-conditioned i.e. in general, necessargoint numbers. For example, to express double-double pre-
precision for obtaining reliable results can not be known icision numbed which has 106 mantissa bits, we represent
advance. the number as summation of two floating-point numbers

Recently, an accurate summation algorithm [5] is deveb®, a@ like d = a® + a®@. Ideally, a® anda® express
oped by Rump, Ogita and Oishi (ROO). ROO algorithithe leading 53 bits ofl and the restl — a®, respectively.
can always give a computed result with faithful roundingsenerally, we represent a numiagras
by adequate computational cost. Faithful rounding means
that the computed result is one of the floating-point neigh-
bors of a true result. Moreover, ROO algorithm has an adAfe call thisa* the multiple floating-point numbeiFigure
vantage in terms of measured computing time. In the mathshows the best case called as non-overlapping expansion.
computational part, there is neither data dependency n@fe relax the definition of multiple floating-point numbers
branch in the inner loop. So, ROO algorithm tends to b&om non-overlapping expansion to gain the computational
affected by compiler’s optimizatiorfiectively. speed. For a positive constantve assume that the follow-

Matrix multiplication consists of dot product. If we useing inequality is satisfied:
error-free transformation described later section, the com- (cu)1a® > |a)] fori < j @
putation of dot product can be transformed into that of sum- -
mation without rounding errors. Therefore, we can immel c is of O(1), the multiple floating-point numbex* has
diately apply ROO algorithm and also obtain the result wittalmostk-fold working precision.
faithful rounding. However, it is notfBcient to apply ROO
algorithm straightforwardly in terms of computational costg grror-free transformation

In this paper, we specialize ROO algorithm to dot prod-
uct. By focusing on the data structure from the transfor- For a,b € F, there is a well-known algorithm due to
mation of summation into dot product, the computationaG. W. Veltkamp (see [1]) which transforms the prodadb
parts for each loop can be limited. As a result, we can déato x + y with X,y € F:

a=aV+a@+a®+ .. . +a¥ aVer (1)

431
—-53bits— a2

~53bits— as

-53bits—

split split

Figure 1: Ideal case for a multiple floating-point number

i il

]

]

]
Algorithm 1 Error-free transformation of the product of]
two floating-point numbers.

function [x,y] = TwoProduct(a, b) o moves

x=fl(a-b)
[a1, 8] = Split(a)
[b1, bo] = Split(b) Figure 2: Image of accurate summation algorithm
y="fl(az- by — ((x—a-b1) —ax-by) —a; - by))

Thena-b = x+ywith x = fl(a- b) and Algorithm 3 (Rump-Ogita-Oishi [5]) For p € F", the

following algorithm computeses with faithful roundin
ulx| > Iy ® otyp " P ?

Algorithm 1 relies on the splitting by Dekker [1] of a 53-
bit floating-point number into two 26-bit parts. Throughout
the paper, we denote it 8plit.

Such algorithms are so-called error-free transforma-
tions [2] and very useful for accurate computations by

functionres = AccSum(p)
t=0; M =Tlogy(n+2);
¢=u-2M; factor =2M.¢;
g = 2M+r|092 max(lpi‘)];

floating-point arithmetic. Moreover, we introduce a new while (tru_e)E v
error-free vector transformation [5]. For a vectpr e [p,T]tl xtractVec(p, o)
Ty =1+7;

F", the following algorithm provideg’ and r such that

/ if factor-
T+Zin:1 P :Zinzl D If |t1| > factor - o

T =71 (11 -1);

Algorithm 2 (Rump-Ogita-Oishi [5]) For p € F", the res = 71 + (12 + sum(p));
following algorithm computeg’ and 7 such thatr + return;
. p =2, pi without error. end if
t=r1y
function [p’, 7] = ExtractVec(p, o) oc=0-¢;
q=(c+p-o; %G =(c+p)-o end
7 = sum(q); %r=Y",0
P=p-0q % p = pi—0q Here, Figure 2 explains the image of Algorithm 3.

o _ . i Next, we explain how to transform the computation of
For simplicity of the latter discussions, we define a gengqt product into that of summation without rounding errors.

eral functionerr as Let X = (X1, Xo, . .., %) T andy = (y1, Y2,...,Yn)" with X, =

Xi(l) " Xi(2 + .+ xi(s) andy; = yi(l) + y.(z) +..+ yi(t). Then

err(f,g):=f-9g, f,geR

For example, lek = fl(a- b). Then xyi = P 4@+ axOYP +yP YY)
1)1 1,2 t
y =err(a-b,Xx), = Xi()i()+Xi()yi()+...+Xi(S)yi(). (4)
which is identical to the outputy of Algorithm 1 It can be seen that the number of temﬁ%yi('f) in (4) be-
(TwoProduct). comesst When applyingTwoProduct to XPy® for all
(j, k), the computation ok;y; can be transformed into sum-
4. Accurate dot product mation with Ztcomponents. By applying the same discus-

sion tox;y; for all i, we obtain an array withstn compo-
In this section, we illustrate how to specialize the accunents from the dot product'y.
rate summation algorithm to the computation of dot prod— Here, we remark on the data structure of this array and

uct for multiple floating-point numbers. explain how to apply Algorithm 3. When executing
First, we introduce the ROO algorithm for accurate sum-

mation: [01.G2] = TwoProduct(x",y")

q1 additional data fromx andy. Then, we can also restrict

o) ourselves to generate a vec¥? by the similar discussion
to the above one.
q3 For simplicity, we define a general function which gen-
q4 erates necessary data fromandy and adds them to the

vectorp adapting to thé-th loop:

qs
Q w“ p = AddElement(p, X, Y, k)

For example, whek = 1, this function generates

Figure 3: Diference of magnitude among data ﬂ(xi(l)yi(l)) forl<i<n
(O Qu] = TwoProduct(Xi(l),yi(z)) and adds them tp. Whenk = 2, this function adds
[ds.G6] = TwoProduct(x?.y\"), APy, APy, err(xy, fi(x Dy
the following relations hold: to p. Moreover, wherk = 3, this function adds
U|Q1|22 0], culaul 22|Q3|, culgul = |gs| APy, (xPyy, (),
(cu)?lasl > [gal, (cu)<lgal > |gel, err(xXPy®, A(xPyD)), err(xPy@, f(xPy))

wherec is the positive constant @(1) in (2). These re- i ,
lations show that there is a bigftérence in the order of to p. Note that the length op is changed according ta

magnitude among the data obtained from the transform};{\-’_hen k iljcreases dfiiciently and all data are generated,
tion. this function does not change the vecpor

For anya, b € F with ujal > |bl, it holds that Summarizing the above-mentioned discussions, we here
- present an algorithm of accurate dot product.

flla+b)=a 5
(@+b) ®) Algorithm 4 (Accurate dot product) For two vectorsx,y

For xy; for all i, the same discussion can be applied. Frorwhose components are multiple floating-point numbers, the
the definition ofo- in Algorithm 3, the following inequality following algorithm computeses whereres is a com-

holds: puted result with faithful rounding ofy.
o > maxxPyd)| (6) _
1<izn functionres = AccDot(X,Y)
Lett; := err(xPy®, ixXPyM)). By (3), it holds that p=10
I & yl(5 y'()-By @) p = AddElement(p, X, Y, 1);
ulflOY D)) > g1, M = [log,(n + 2)T;
¢=u-2M; factor =2M.¢;
This and (6) yields o = 2M+Tlog; max(pi1.
uo > [tj. (7 t=0; k=2
Then considering (5) and (7), we have while (true)
[p, 7] = ExtractVec(p, o);
flc+t)=0 forl<is<n T=t+T;

p = AddElement(p, X, Y, K);

If cis smaller thanlog, nJ, then it holds that if |r1] > factor - o

NG - =11 (T2 -1);
filo + XYMy = for j+k> 2 ras = 114 (2 4 sun(p);

In that case, it holds in Algorithm 2 that = 0 for all i, return;
r = 0andp = p. Therefore, we need not to compute end if

err(xXMyD A(DyDy) for j > 2 nor fipdPy®) for j+k > 2 t= 1

in the first loop in Algorithm 3. Utilizing this fact, in the o=0"¢,
first loop, we restrict ourselves to generate a veptbom k=k+1;
dot productx™y by only using flPyY), ie., end

ph = (ﬂ(x(ll)y(ll)), ﬂ(Xgl)y(zl)), L FIOEDYONT € . If the algorithm stops for smal because the given prob-

lem is well-conditioned, then the algorithm does not gener-
If the stopping criterion in the first loop in Algorithm 3 is ate all data fop from x andy so that some computational
not triggered, then we proceed to the next loop and generatest can be reduced.

5. Matrix multiplication

80
In this section, we discuss how to utilize an accurate dot 70l
product algorithm (Algorithm 4) for matrix multiplication.
A basic algorithm can be written as follows: 601
Algorithm 5 (Accurate matrix multiplication) Let A —~ 50} |
and B bem x p and p x n matrices, respectively. Assume @/ ‘ Method 1
that each element oA, B is represented by a multiple @ 40 Method 2 1
floating point number a# = >, AO, B = ¥i_; BY with = g0l
Al e F™P and BY) e FP". Then the following algorithm
compute € F™", which is a faithful rounding oAB. 20¢
functionC = AccMatMul(A, B) 10t
fori=1:m 0 ‘ ‘ ‘
forj=1:n . _ 10° 10° 10 10% 10%
C(i, j) = AccDot(A(,:), B(;, j)) condition number
end
end

One may consider thaplit for A and B called in Figure 4: Elapsed time for calculatif®Afor n = 300

AccDot can be moved out of the for-loops, eg!) =
A + AD whereA! corresponds to the leading 26 bits ofThen, we aim on computing a faithful rounding BA
AD andAY the resia® — A However, if all elements ok Note that the higher condition number Afis, the more
andB are split into two parts and all the results are storedjeavy cancellations occur in the computatiorR@f
much amount of memory is required. Moreover, when a Forn = 300, we compare the following two methods:
given problem is well-conditioned, splitting all elements of . . .
AandB may be wasted because it may be not necessary ff€tned 1 A stra|ghtforvTvard method by using Algorithm 1
the algorithm to generate all data frofnand B for calcu- (TwoProduct) for x'y and Algorithm 3 fccSum)
lating the faithful rounding oAB. _ Method 2 Proposed method (Algorithm 5)

Therefore, it seems that there is a trafléo the accu-
rate computation of the matrix multiplicatiohB between Figure 6 displays the elapsed time for calculatiRg by
the computational speed and memory. The computationiethods 1 and 2 for various cos(@).
speed also depends on how ill-conditioned the problem is. Method 2 works adaptively until obtaining the faithful
Namely, we should carefully implement the algorithm byrounding ofRA As a result, it can be seen that Method 2
considering these aspects. is from 3 to 9 times faster than Method 1 in this example.

6. Numerical results References

In this section, we present some numerical results. AJll] T. J. Dekker, A floating-point technique for extending
computations are done in IEEE 754 double precision on the available precision, Numer. Math., 18 (1971), 224—
Matlab 7.1 using the mex function in C language. Numeri- 242.
cal experiments are done on a PC with Pentium IV 2.6GH
CPU.

First, we generate amx n matrix A whose components
are multiple floating-point numbers such that

7 [3] S. Oishi, K. Tanabe, T. Ogita, and S. M. Rump. Con-

[22] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and
dot product. SIAM Journal on Scientific Computing,
26:6 (2005), 1955-1988.

A= AD ADepm vergence of Rump’s method for inverting arbitrarily
i=1 ill-conditioned matrices, J. Comp. Appl. Math., 205:1
with arbitrary condition number by using a method in [4]. (2007), 533-544.

Here, for a square matriX, condition number of X is de- L .
fined by [4] S. M. Rump. A class of arbitrarily ill-conditioned

cona(X) := [IXIIalIXYlo. floating-point matrices, SIAM J. Matrix Anal. Appl,

. . 12:4 (1991), 645-653.
Next, we compute an approximate inverBeof A by

Rump’s method [3] as [5] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-
point summation, Part | and Il, submitted for publica-

7
R= Z RO, RO e p™n tion.
i=1

