
Accurate Matrix Multiplication with Multiple Floating-point Numbers

Katsuhisa Ozaki†, Takeshi Ogita‡,†, Siegfried M. Rump∗,†, Shin’ichi Oishi†

† Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
‡ CREST, Japan Science and Technology Agency (JST)

∗ Institute for Reliable Computing, Hamburg University of Technology
Email: k ozaki@aoni.waseda.jp

Abstract—This paper is concerned with an accurate
computation of matrix multiplication, where components
of matrices are represented by summation of floating-point
numbers. Recently, an accurate summation algorithm is de-
veloped by the latter three of the authors. In this paper, it is
specialized to dot product. Using this, a fast implementa-
tion of accurate matrix multiplication is discussed. Finally,
some numerical results are presented to confirm the effec-
tiveness of the proposed algorithm.

1. Introduction

In this paper, we are concerned with the accurate com-
putation of matrix multiplication

C = AB, A ∈ Rm×p, B ∈ Rp×n.

Fast implementations of multi-precision arithmetic have
frequently been discussed and there are many software li-
braries for that purpose. However, most of such libraries do
not guarantee an accuracy of the result because a problem
may be arbitrary ill-conditioned i.e. in general, necessary
precision for obtaining reliable results can not be known in
advance.

Recently, an accurate summation algorithm [5] is devel-
oped by Rump, Ogita and Oishi (ROO). ROO algorithm
can always give a computed result with faithful rounding
by adequate computational cost. Faithful rounding means
that the computed result is one of the floating-point neigh-
bors of a true result. Moreover, ROO algorithm has an ad-
vantage in terms of measured computing time. In the main
computational part, there is neither data dependency nor
branch in the inner loop. So, ROO algorithm tends to be
affected by compiler’s optimization effectively.

Matrix multiplication consists of dot product. If we use
error-free transformation described later section, the com-
putation of dot product can be transformed into that of sum-
mation without rounding errors. Therefore, we can imme-
diately apply ROO algorithm and also obtain the result with
faithful rounding. However, it is not efficient to apply ROO
algorithm straightforwardly in terms of computational cost.

In this paper, we specialize ROO algorithm to dot prod-
uct. By focusing on the data structure from the transfor-
mation of summation into dot product, the computational
parts for each loop can be limited. As a result, we can de-

velop a fast and accurate algorithm of calculating dot prod-
uct. Next, we extend it to a fast implementation for accurate
matrix multiplication, whose results achieve faithful round-
ing. Finally, we present some numerical results to confirm
an effectiveness of our algorithm.

2. Multiple floating-point number

In this section, we explain how we represent multi-
precision number. First, we state the notation used through-
out this paper. LetF be a set of floating-point numbers. Let
fl(· · ·) be the result of a floating-point computations. Letu
be the roundoff unit (especially,u = 2−53 in double preci-
sion defined in IEEE standard 754).

A normalized double precision floating-point number
defined by IEEE 754 has 53 mantissa bits. For example,
if there is a big difference in the order of magnitude be-
tween two positive floating-point numbersa and b with
2−40a ∼ b, the result of fl(a + b) loses about lower 40
bits of b. To overcome such problems, we represent a
multi-precision number as an additive form of floating-
point numbers. For example, to express double-double pre-
cision numberd which has 106 mantissa bits, we represent
the number as summation of two floating-point numbers
a(1),a(2) like d = a(1) + a(2). Ideally, a(1) anda(2) express
the leading 53 bits ofd and the restd − a(1), respectively.
Generally, we represent a numbera∗ as

a∗ = a(1) + a(2) + a(3) + . . . + a(k), a(i) ∈ F. (1)

We call thisa∗ the multiple floating-point number. Figure
1 shows the best case called as non-overlapping expansion.
We relax the definition of multiple floating-point numbers
from non-overlapping expansion to gain the computational
speed. For a positive constantc, we assume that the follow-
ing inequality is satisfied:

(cu) j−i |a(i)| ≥ |a(j)| for i < j (2)

If c is of O(1), the multiple floating-point numbera∗ has
almostk-fold working precision.

3. Error-free transformation

For a,b ∈ F, there is a well-known algorithm due to
G. W. Veltkamp (see [1]) which transforms the producta·b
into x + y with x, y ∈ F:

��
��

��
�����	
�

�����	
�
�����	
�

Figure 1: Ideal case for a multiple floating-point number

Algorithm 1 Error-free transformation of the product of
two floating-point numbers.

function [x, y] = TwoProduct(a,b)
x = fl(a · b)
[a1,a2] = Split(a)
[b1,b2] = Split(b)
y = fl(a2 · b2 − (((x− a1 · b1) − a2 · b1) − a1 · b2))

Thena · b = x + y with x = fl(a · b) and

u|x| ≥ |y|. (3)

Algorithm 1 relies on the splitting by Dekker [1] of a 53-
bit floating-point number into two 26-bit parts. Throughout
the paper, we denote it asSplit.

Such algorithms are so-called error-free transforma-
tions [2] and very useful for accurate computations by
floating-point arithmetic. Moreover, we introduce a new
error-free vector transformation [5]. For a vectorp ∈
Fn, the following algorithm providesp′ and τ such that
τ +

∑n
i=1 p′i =

∑n
i=1 pi .

Algorithm 2 (Rump-Ogita-Oishi [5]) For p ∈ Fn, the
following algorithm computesp′ and τ such thatτ +∑n

i=1 p′i =
∑n

i=1 pi without error.

function [p′, τ] = ExtractVec(p, σ)
q = (σ + p) − σ; % qi = (σ + pi) − σ
τ = sum(q); % τ =

∑n
i=1 qi

p′ = p− q; % p′i = pi − qi

For simplicity of the latter discussions, we define a gen-
eral functionerr as

err(f ,g) := f − g, f ,g ∈ R.
For example, letx = fl(a · b). Then

y′ = err(a · b, x),

which is identical to the outputy of Algorithm 1
(TwoProduct).

4. Accurate dot product

In this section, we illustrate how to specialize the accu-
rate summation algorithm to the computation of dot prod-
uct for multiple floating-point numbers.

First, we introduce the ROO algorithm for accurate sum-
mation:

����� �����

� ���	�

Figure 2: Image of accurate summation algorithm

Algorithm 3 (Rump-Ogita-Oishi [5]) For p ∈ Fn, the
following algorithm computesres with faithful rounding
of

∑
p.

functionres = AccSum(p)
t = 0; M = dlog2(n + 2)e;
φ = u · 2M; factor = 2M · φ;
σ = 2M+dlog2 maxi (|pi |)e;
while (true)

[p, τ] = ExtractVec(p, σ)
τ1 = t + τ;
if |τ1| > factor · σ

τ2 = τ1− (τ1 − t);
res = τ1 + (τ2 + sum(p));
return;

end if
t = τ1;
σ = σ · φ;

end

Here, Figure 2 explains the image of Algorithm 3.
Next, we explain how to transform the computation of

dot product into that of summation without rounding errors.
Let x = (x1, x2, . . . , xn)T andy = (y1, y2, . . . , yn)T with xi =

x(1)
i + x(2)

i + . . . + x(s)
i andyi = y(1)

i + y(2)
i + . . . + y(t)

i . Then

xiyi = (x(1)
i + x(2)

i + . . . + x(s)
i)(y(1)

i + y(2)
i + . . . + y(t)

i)

= x(1)
i y(1)

i + x(1)
i y(2)

i + . . . + x(s)
i y(t)

i . (4)

It can be seen that the number of termsx(j)
i y(k)

i in (4) be-

comesst. When applyingTwoProduct to x(j)
i y(k)

i for all
(j, k), the computation ofxiyi can be transformed into sum-
mation with 2stcomponents. By applying the same discus-
sion toxiyi for all i, we obtain an array with 2stn compo-
nents from the dot productxTy.

Here, we remark on the data structure of this array and
explain how to apply Algorithm 3. When executing

[
q1,q2

]
= TwoProduct(x(1)

i , y(1)
i)

��

��

��

��

��

��

Figure 3: Difference of magnitude among data

[
q3,q4

]
= TwoProduct(x(1)

i , y(2)
i)

[
q5,q6

]
= TwoProduct(x(2)

i , y(1)
i),

the following relations hold:

u|q1| ≥ |q2|, cu|q1| ≥ |q3|, cu|q1| ≥ |q5|
(cu)2|q1| ≥ |q4|, (cu)2|q1| ≥ |q6|,

wherec is the positive constant ofO(1) in (2). These re-
lations show that there is a big difference in the order of
magnitude among the data obtained from the transforma-
tion.

For anya,b ∈ F with u|a| ≥ |b|, it holds that

fl(a + b) = a. (5)

For xiyi for all i, the same discussion can be applied. From
the definition ofσ in Algorithm 3, the following inequality
holds:

σ > max
1≤i≤n

|x(1)
i y(1)

i | (6)

Let ti := err(x(1)
i y(1)

i , fl(x(1)
i y(1)

i)). By (3), it holds that

u|fl(x(1)
i y(1)

i)| ≥ |ti |.
This and (6) yields

uσ > |ti |. (7)

Then considering (5) and (7), we have

fl(σ + ti) = σ for 1 ≤ i ≤ n.

If c is smaller thanblog2 nc, then it holds that

fl(σ + x(j)
i y(k)

i) = σ for j + k > 2.

In that case, it holds in Algorithm 2 thatqi = 0 for all i,
τ = 0 and p′ = p. Therefore, we need not to compute
err(x(j)

i y(j)
i , fl(x(j)

i y(j)
i)) for j ≥ 2 nor fl(x(j)

i y(k)
i) for j +k > 2

in the first loop in Algorithm 3. Utilizing this fact, in the
first loop, we restrict ourselves to generate a vectorp from
dot productxTy by only using fl(x(1)

i y(1)
i), i.e.,

p(1) = (fl(x(1)
1 y(1)

1), fl(x(1)
2 y(1)

2), . . . , fl(x(1)
n y(1)

n))T ∈ Fn.

If the stopping criterion in the first loop in Algorithm 3 is
not triggered, then we proceed to the next loop and generate

additional data fromx and y. Then, we can also restrict
ourselves to generate a vectorp(2) by the similar discussion
to the above one.

For simplicity, we define a general function which gen-
erates necessary data fromx andy and adds them to the
vectorp adapting to thek-th loop:

p = AddElement(p, x, y, k)

For example, whenk = 1, this function generates

fl(x(1)
i y(1)

i) for 1 ≤ i ≤ n

and adds them top. Whenk = 2, this function adds

fl(x(2)
i y(1)

i), fl(x(1)
i y(2)

i), err(x(1)
i y(1)

i , fl(x(1)
i y(1)

i))

to p. Moreover, whenk = 3, this function adds

fl(x(1)
i y(3)

i), fl(x(2)
i y(2)

i), fl(x(3)
i y(1)

i),

err(x(2)
i y(1)

i , fl(x(2)
i y(1)

i)), err(x(1)
i y(2)

i , fl(x(1)
i y(2)

i))

to p. Note that the length ofp is changed according tok.
When k increases sufficiently and all data are generated,
this function does not change the vectorp.

Summarizing the above-mentioned discussions, we here
present an algorithm of accurate dot product.

Algorithm 4 (Accurate dot product) For two vectorsx, y
whose components are multiple floating-point numbers, the
following algorithm computesres whereres is a com-
puted result with faithful rounding ofxTy.

functionres = AccDot(x, y)
p = [];
p = AddElement(p, x, y,1);
M = dlog2(n + 2)e;
φ = u · 2M; factor = 2M · φ;
σ = 2M+dlog2 maxi (|pi |)e;
t = 0; k = 2;
while (true)

[p, τ] = ExtractVec(p, σ);
τ1 = t + τ;
p = AddElement(p, x, y, k);
if |τ1| > factor · σ

τ2 = τ1 − (τ1 − t);
res = τ1 + (τ2 + sum(p));
return;

end if
t = τ1;
σ = σ · φ;
k = k + 1;

end

If the algorithm stops for smallk because the given prob-
lem is well-conditioned, then the algorithm does not gener-
ate all data forp from x andy so that some computational
cost can be reduced.

5. Matrix multiplication

In this section, we discuss how to utilize an accurate dot
product algorithm (Algorithm 4) for matrix multiplication.
A basic algorithm can be written as follows:

Algorithm 5 (Accurate matrix multiplication) Let A
and B bem× p and p × n matrices, respectively. Assume
that each element ofA, B is represented by a multiple
floating point number asA =

∑s
i=1 A(i), B =

∑t
i=1 B(i) with

A(i) ∈ Fm×p and B(i) ∈ Fp×n. Then the following algorithm
computesC ∈ Fm×n, which is a faithful rounding ofAB.

functionC = AccMatMul(A, B)
for i = 1 : m

for j = 1 : n
C(i, j) = AccDot(A(i, :), B(:, j))

end
end

One may consider thatSplit for A and B called in
AccDot can be moved out of the for-loops, e.g.A(i) =

A(i)
1 + A(i)

2 whereA(i)
1 corresponds to the leading 26 bits of

A(i) andA(i)
2 the restA(i)−A(i)

1 . However, if all elements ofA
andB are split into two parts and all the results are stored,
much amount of memory is required. Moreover, when a
given problem is well-conditioned, splitting all elements of
A andB may be wasted because it may be not necessary for
the algorithm to generate all data fromA andB for calcu-
lating the faithful rounding ofAB.

Therefore, it seems that there is a tradeoff in the accu-
rate computation of the matrix multiplicationAB between
the computational speed and memory. The computational
speed also depends on how ill-conditioned the problem is.
Namely, we should carefully implement the algorithm by
considering these aspects.

6. Numerical results

In this section, we present some numerical results. All
computations are done in IEEE 754 double precision on
Matlab 7.1 using the mex function in C language. Numeri-
cal experiments are done on a PC with Pentium IV 2.6GHz
CPU.

First, we generate ann× n matrix A whose components
are multiple floating-point numbers such that

A =

7∑

i=1

A(i), A(i) ∈ Fn×n

with arbitrary condition number by using a method in [4].
Here, for a square matrixX, condition number of X is de-
fined by

cond2(X) := ‖X‖2‖X−1‖2.
Next, we compute an approximate inverseR of A by
Rump’s method [3] as

R =

7∑

i=1

R(i), R(i) ∈ Fn×n.

10
0

10
20

10
40

10
60

10
80

0

10

20

30

40

50

60

70

80

condition number

tim
e

(s
ec

)

Method 1
Method 2

Figure 4: Elapsed time for calculatingRAfor n = 300

Then, we aim on computing a faithful rounding ofRA.
Note that the higher condition number ofA is, the more
heavy cancellations occur in the computation ofRA.

Forn = 300, we compare the following two methods:

Method 1 A straightforward method by using Algorithm 1
(TwoProduct) for xTy and Algorithm 3 (AccSum)

Method 2 Proposed method (Algorithm 5)

Figure 6 displays the elapsed time for calculatingRA by
Methods 1 and 2 for various cond2(A).

Method 2 works adaptively until obtaining the faithful
rounding ofRA. As a result, it can be seen that Method 2
is from 3 to 9 times faster than Method 1 in this example.

References

[1] T. J. Dekker, A floating-point technique for extending
the available precision, Numer. Math., 18 (1971), 224–
242.

[2] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and
dot product. SIAM Journal on Scientific Computing,
26:6 (2005), 1955–1988.

[3] S. Oishi, K. Tanabe, T. Ogita, and S. M. Rump. Con-
vergence of Rump’s method for inverting arbitrarily
ill-conditioned matrices, J. Comp. Appl. Math., 205:1
(2007), 533–544.

[4] S. M. Rump. A class of arbitrarily ill-conditioned
floating-point matrices, SIAM J. Matrix Anal. Appl,
12:4 (1991), 645–653.

[5] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-
point summation, Part I and II, submitted for publica-
tion.

