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Quantum Mechanics

Plank constant

Plank constant A is defined by

h = 6.6260755 x 10 *4[J - s].

Sometimes h = h /27 is used.

Equation of Motion of Electron Beam
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This equation is called the Schrodinger equation.




Energy and Solution

We assume that the Energy relation holds:

Then, we have a solution of (2) as
w(x’w _ Aez’(p:v—Et)/h.

In fact,
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Phase velocity vs group velocity
Phase velocity

The phase velocity is determined from the condition

pr — Bt = const (6)
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This does not coincide with the classical view of electron being a particle

moving with the velocity v. In fact, by the quantum mechanics the
probability of detecting electron is given by

[¥(@,t)* = |A* (8)




Group velocity
Dispersion relation

Put I
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Then, the wave function of electron beam becomes
w(xj t) _ Aez’(k‘x—wt).
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Wave Packet

Let
Pr(z, ) = Ae'emen),
(3, 1) = Agill+OR—(wtaw)] (12)
Consider ¢ = 91 + ¢,. Then,
[v(z,t))* = 2|A|{1 + cos[(Ak)z — (Aw)t]}. (13)

In this case, we can see the wave packet moves with the group velocity
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Schrodinger equation in potential

If electron is in a potential V' (x, y, z), then the following Schrodinger
equation holds:
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If we use ., . -
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we can rewrite eq.(15) as
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Hamitonian form

If we put
h2
H = —%VQ + Vix,y, 2),
the Schrodinger equation becomes
Hap = (AL
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Time independent Schrodinger equation %
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Let us assume that a wave function has a form /

Yl y, 2,t) = u(z, y, 2)(Ae”BIE). (20)

Then, eq.(19) becomes
Hu = Eu. (21)

This is called a time-independent Schrodinger equation.




One-dimensional Problem

We consider a simple case of V(z,y,2) = V(x). In this case, the
Schrodinger equation becomes

W (. t) . 0Y(z, 1)
o B2 + V(x)p(x,t) = ih 5 (22)
Its time independent one is
h? d*u(x)
—5 gz T V(z)u(zx) = Eu(x). (23)

We put normalization conditions

/_OO [W(x,t)*dz =1, or /OO |u(x)|*dz = 1. (24)
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Infinite Wall

Consider an infinite wall:
oo (x <0)
Viz)=¢ 0 (0<z< L)
oo (L <)
The time independent Schrodinger equation becomes
h? d*u(x)
om da?
h@cpdu(x)
2m  dx?

Here, V[, = oc.

— Bu(x) (0<z <L)

+ Vo(z)u(x) = Fu(x) (x <0, L < z).




Solution

It is easily seen that
u(z) =0 (x<0,L<x).

Moreover, from the continuity of the wave function, we have

We solve

3 h_2 d*u(x)
2m  dx?

=Fu(z) (0<z<L)

(29)

under the boundary condition (28). If we put k* = 2mE/h?, eq.(29)

becomes

h_2 d*u(z)
2m  dx?

= —k*u(z).

(30)




Eigenvalue Problem

The general solution of eq.(30) is given by
u(x) = Asin kx + B cos k. (31)

Here, k = v/2mFE /h. From the boundary condition (28), we have

0=wu(0) =Asin0+ Bcos0 =B =0. (32)
Moreover, from
u(L) =0 (33)
we have o
k=—, (n=1,2,--+). (34)




Discrete Eigenvalues

Therefore, we have

2
up () = \/;sinn—zx, (n=1,2,---
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