Dept Info. and Comp. Sci., Waseda Univ.

http://www.oishi.info.waseda.ac.jp

Physics for Computer Scientist I.

Shin ichi:OISHI

(Department of Information and Computer Science)
3-4-1 Okubo Shinjuku-ku, Tokyo, Japan -
email: oishi@oishi.info.waseda.ac.jp

Quantum Mechanics

Plank constant
Plank constant h is defined by

$$
\begin{equation*}
h=6.6260755 \times 10^{-34}[J \cdot s] . \tag{1}
\end{equation*}
$$

Sometimes $\hbar=h / 2 \pi$ is used.

Equation of Motion of Electron Beam

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}=i \hbar \frac{\partial \psi}{\partial t} \tag{2}
\end{equation*}
$$

This equation is called the Schrödinger equation.

Energy and Solution

We assume that the Energy relation holds:

$$
\begin{equation*}
E=\frac{p^{2}}{2 m} \tag{3}
\end{equation*}
$$

Then, we have a solution of (2) as

$$
\begin{equation*}
\psi(x, t)=A e^{i(p x-E t) / \hbar} . \tag{4}
\end{equation*}
$$

In fact,

$$
\begin{align*}
& i \hbar \frac{\partial \psi}{\partial t}=E \psi \\
& -\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}=\left(\frac{p^{2}}{2 m}\right) \psi \tag{5}
\end{align*}
$$

Phase velocity vs group velocity

Phase velocity
The phase velocity is determined from the condition

$$
\begin{equation*}
p x-E t=\mathrm{const} \tag{6}
\end{equation*}
$$

as

$$
\begin{equation*}
v_{p}=\frac{E}{p}=\frac{p}{2 m}=\frac{v}{2} . \tag{7}
\end{equation*}
$$

This does not coincide with the classical view of electron being a particle moving with the velocity v. In fact, by the quantum mechanics the probability of detecting electron is given by

$$
\begin{equation*}
|\psi(x, t)|^{2}=|A|^{2} . \tag{8}
\end{equation*}
$$

Group velocity

Dispersion relation
Put

$$
\begin{equation*}
k=\frac{p}{\hbar}, \quad \omega=\frac{E}{\hbar} . \tag{9}
\end{equation*}
$$

Then, the wave function of electron beam becomes

$$
\begin{equation*}
\psi(x, t)=A e^{i(k x-\omega t)} \tag{10}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\hbar \omega=\frac{\hbar^{2} k^{2}}{2 m} . \tag{11}
\end{equation*}
$$

Wave Packet

Let

Consider $\psi=\psi_{1}+\psi_{2}$. Then,

$$
\begin{equation*}
|\psi(x, t)|^{2}=2|A|\{1+\cos [(\Delta k) x-(\Delta \omega) t]\} . \tag{13}
\end{equation*}
$$

In this case, we can see the wave packet moves with the group velocity

$$
\begin{equation*}
\frac{d \omega}{d k}=v \tag{14}
\end{equation*}
$$

Schrödinger equation in potential

If electron is in a potential $V(x, y, z)$, then the following Schrödinger equation holds:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}\right)+V(x, y, z) \psi=i \hbar \frac{\partial \psi}{\partial t} . \tag{15}
\end{equation*}
$$

If we use

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}, \tag{16}
\end{equation*}
$$

we can rewrite eq.(15) as

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V(x, y, z) \psi=i \hbar \frac{\partial \psi}{\partial t} \tag{17}
\end{equation*}
$$

Hamitonian form

If we put

$$
\begin{equation*}
\mathcal{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x, y, z), \tag{18}
\end{equation*}
$$

the Schrödinger equation becomes

$$
\begin{equation*}
\mathcal{H} \psi=i \hbar \frac{\partial \psi}{\partial t} \tag{19}
\end{equation*}
$$

Time independent Schrödinger equation

Let us assume that a wave function has a form

$$
\begin{equation*}
\psi(x, y, z, t)=u(x, y, z)\left(A e^{-i E t / \hbar}\right) \tag{20}
\end{equation*}
$$

Then, eq.(19) becomes

$$
\begin{equation*}
\mathcal{H} u=E u . \tag{21}
\end{equation*}
$$

This is called a time-independent Schrödinger equation.

One-dimensional Problem

We consider a simple case of $V(x, y, z)=V(x)$. In this case, the Schrödinger equation becomes

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}+V(x) \psi(x, t)=i \hbar \frac{\partial \psi(x, t)}{\partial t} \tag{22}
\end{equation*}
$$

Its time independent one is

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u(x)}{d x^{2}}+V(x) u(x)=E u(x) . \tag{2}
\end{equation*}
$$

We put normalization conditions

$$
\begin{equation*}
\int_{-\infty}^{\infty}|\psi(x, t)|^{2} d x=1, \text { or } \quad \int_{-\infty}^{\infty}|u(x)|^{2} d x=1 \tag{24}
\end{equation*}
$$

Infinite Wall

Consider an infinite wall:

$$
V(x)= \begin{cases}\infty & (x<0) \tag{25}\\ 0 & (0 \leq x \leq L) \\ \infty & (L<x)\end{cases}
$$

The time independent Schrödinger equation becomes

$$
\begin{array}{ll}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u(x)}{d x^{2}}=E u(x) & (0 \leq x \leq L) \tag{26}\\
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u(x)}{d x^{2}}+V_{0}(x) u(x)=E u(x) & (x<0, L<x)
\end{array}
$$

Here, $V_{0}=\infty$.

Solution

It is easily seen that

$$
\begin{equation*}
u(x)=0 \quad(x<0, L<x) \tag{27}
\end{equation*}
$$

Moreover, from the continuity of the wave function, we have

$$
\begin{equation*}
u(0)=u(L)=0 . \tag{28}
\end{equation*}
$$

We solve

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u(x)}{d x^{2}}=E u(x) \quad(0 \leq x \leq L) \tag{29}
\end{equation*}
$$

under the boundary condition (28). If we put $k^{2}=2 m E / \hbar^{2}$, eq.(29) becomes

$$
\begin{equation*}
\frac{\hbar^{2}}{2 m} \frac{d^{2} u(x)}{d x^{2}}=-k^{2} u(x) \tag{30}
\end{equation*}
$$

Eigenvalue Problem

The general solution of eq.(30) is given by

$$
\begin{equation*}
u(x)=A \sin k x+B \cos k x \tag{31}
\end{equation*}
$$

Here, $k=\sqrt{2 m E} / \hbar$. From the boundary condition (28), we have

$$
\begin{equation*}
0=u(0)=A \sin 0+B \cos 0=B=0 . \tag{32}
\end{equation*}
$$

Moreover, from

$$
\begin{equation*}
u(L)=0 \tag{33}
\end{equation*}
$$

we have

$$
\begin{equation*}
k=\frac{n \pi}{L}, \quad(n=1,2, \cdots) . \tag{34}
\end{equation*}
$$

Discrete Eigenvalues

Therefore, we have

$$
\begin{equation*}
u_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}, \quad(n=1,2, \cdots ; 0 \leq x \leq L) \tag{35}
\end{equation*}
$$

for

$$
\begin{equation*}
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L} \tag{36}
\end{equation*}
$$

