Introduction to C Programming

— Functions - Global Variables —

Waseda University

Today’s Topics

@ Creating Functions

How to define a function
Calling a function

Local variables

Scope of a local variable

@ Use global variables
e declaring a global variable
e Scope of a global variable
e Arrays as global variables

~

#include <stdio.h>
Type_of-_function Name (Parameters)q{
Description
return Return_value; /*Give the return value of this function*/

}
int main(void){
double a;
a = Name (Parameters); /+*Call to the function Name*/
}
N)

@ Each function has Parameters and Return value.

@ Define a function before #include statement after main function.
(You can use the function after you define it.)

Function name should not be the same as reserved words.
Functions exit with the return statement.
Multi parameters are accepted but the return value should be one.

When we call a function, assign Parameters to the function and get a
return value.

Making a linear function

#include <stdio.h>

int main(void){
double a[3];
a[0]=2.5%0+1.0;
al[1]=2.5%1+1.0;
a[2]=2.5%2+1.0;
return O;

Making a linear function

#include <stdio.h>
#include <stdio.h>

int main(void){ double linear(int x){
double al[3]; double y;
al[0]=2.5%0+1.0; y = 2.5%x+1.0
al[1]=2.5%1+1.0; return y; /* Return value */
a[2]=2.5%2+1.0; T
return 0; int main(void){
} double al[3];

al[0]=1linear(0);
al[1]l=linear(1);
a[2]=linear(2);
return O;

@ Avoid writing many times the common parts “2.5*n+1.0".

More remarks on functions

@ All programs of C language consist of functions.

e int main(void){...} is also a function.
e Every program need the main function.

@ Types of functions

e main function (called at the beginning of the program)
Standard functions (with #include statement)
Functions for obtaining the return value (ex. sin(z), log(x))
Operations in the functions with no return value
(ex. printf(" Hello, world\n"); etc.)

o Why making functions?

e Functions allow us to group commonly used code into a compact unit.
o We can write a program in units easy to understand.

Exercise

Exercise: maximum function of four variables

@ When we input a z that is type of double, compute =, —z, 2%, \/|z|
and returns the maximum value of them. (dmax.c)

@ OQutput of this program is as follows:

Input x: -0.5 O EnterO
Answer is 0.707107.

A hint of exercise

@ You make a function max(a, b) that returns a bigger value of a and b.
We call this function in the main function.

double max(double a, double b){
if (a<b) return ... ;
else return ... ;

}

@ Absolute value is given by “fabs ()" function, square root is given by
“sqrt ()" function, respectively.

@ When you compile with the math library,
(1) #include <math.h> statement is needed,
(2) -Im option is necessary.

A hint of exercise

Here is an example of the main function.

s the main function

int main(void){
double x, y;
printf ("Input x:");
scanf ("%1f",&x) ;
y = max(x, -x);
y = max(y, x*x);

printf ("Answer is %f.¥n",y);
return 0;

@ A variable x is an input value.
@ They is assigned a temporary value of the maximum.

@ Call the max function repeatedly and assign each return values to y.

Parameters and Variables

@ When a value of the parameter is changed in a function, the input
value is never changed in the main function.

@ You can declare a variable of the same name in different functions but
these are considered as a different thing.

#include <stdio.h> \\
void func(int x){ /* x is declared only in this function. */
x=7; /* The x below is different from this x. */
}
int main(void){
int x=3;
func(x); /* Parameter x is 3 and copies 3 to the x above. */
printf("x is %d.¥n", x); /* Here "x is 3." */
return O;

}
N J

Scope of variables

variable is valid.

the function in which it is declared.

@ The scope of a variable is the area of the program in which the
@ A local variable (including parameters) has a scope that is limited to

@ You can declare a local variable with the same name as another local

variable in a different function. These are considered as different.

-

double functionA (int x, int y){ h
/* The scope of x and y. */
}
int functionB(int x){
double y;
- /* The scope of x and y. */
oo

j

Global variables

=A global variable is valid everywhere, so its scope is the whole program.

@ Declared outside of functions (usually after #include or #define

statement)
@ Scope: entire program
4 N
#include <stdio.h>
double ParamA, ParamB; /* 1. Global variables */

double linear(double x){
return ParamA*x+ParamB; /* 3. Global can be used here. */

}

int main(void){
ParamA=5.0; ParamB=3.2; /* 2. Assigned values */
printf ("Result is %f.¥n", linear(1.2));
printf ("Result is %f.¥n", linear(2.0));
return O;

Arrays as global variables

Huge arrays must be declared as global variables.
ex.

int main(void){
double Array[2000000000] ;
/* Huge array cannot declare as a local variable */

@ Arrays as global variables are initialized all 0 arrays.

@ The huge array is not recommended unless it is necessary.

double Array[2000000000] = {1.0, 2.0}; /* No way... */

Examples of functions

int method1(int a, int b)
— Parameters: a, b (type of int)
Type of return value: int

double method2(int a, double b)

— Parameters: a, b (type of int and double respectively)
Type of return value: double

boolean method3(int a, int b, int c)
— Parameters: a, b, ¢ (type of int)
Type of return value: bloolean (true or false)

void method4(double x)
— Parameters: x (type of double), Type of return value: none

double method5(void)
— Parameters: none, Type of return value: double

Summary

@ Creating Functions

How to define a function
Calling a function

Local variables

Scope of a local variable

@ Use global variables
e declaring a global variable
e Scope of a global variable
e Arrays as global variables

