Introduction to C Programming

— Pointers —

Waseda University

Today’s Topics

Understanding pointers

o Memory of computer, Addresses of variable.
The swap function

Pointers (address variables)

°
°
@ The operator ampersand (&)
@ The operator asterisk (*)

°

Pointers and Arrays

Memory addresses

@ Most modern computers are
byte-addressable (each address

identifies a single byte). Address Contents Example
.) 0x00000001 0x32
@ lbyte is equal to 8bits. 0x00000002 Ox4a Allocated to
Add . d 0x00000003 0x2f int a
° resses are assigned automat- 000000004 Y
ically when a variable is declared. 0x00000005 Oxd4
char . lbyte O 8bitsd 0x00000006 0x29
. . 0x00000007 0x82 Allocated to
Int : 4bytes[] 32b!tSD 0x00000008 | Oxcc double b
double : 8bytesO 64bits[] [0 O [0x00000009 0x3d (needs 8bytes)
0x0000000a 0x10
@ A variable is assigned by 0x0000000b | 0x04
specifying the address that 0x0000000c 1 Ox27
p_ ying . 0x0000000d 0x7d char c
points to that variable.

@ Pointers contain the addresses
of other variables.

Memory addresses

@ Most modern computers are
byte-addressable (each address

identifies a single byte). Address Contents Example
.) 0x00000001 0x32
@ lbyte is equal to 8bits. 0x00000002 Ox4a Allocated to
Add ned 0x00000003 0x2F int a
° resses are assigned automat- 000000004 Y
ically when a variable is declared. 0x00000005 Oxd4
char . lbyte O 8bitsd 0x00000006 0x29
. . 0x00000007 0x82 Allocated to
Int : 4bytes[] 32b!tSD 0x00000008 | Oxcc double b
double : 8bytesO 64bits[] [0 O [0x00000009 0x3d (needs 8bytes)
0x0000000a 0x10
@ A variable is assigned by 0x0000000b | 0x04
specifying the address that 0x0000000c 1 Ox27
p_ ying . 0x0000000d 0x7d char c
points to that variable.

@ Pointers contain the addresses
of other variables.

Review (Scope of local variable)

@ A scope of a local variable is limited to the function in which it is
declared.

@ When a value of a parameter is changed in a function, the input value
is never changed in the main function.

#include <stdio.h> \\
void func(int x){ /* x is declared only in this function. */
x=7; /* The x below is different from this x. */
}
int main(void){
int x=3;
func(x); /* Parameter x is 3 and copies 3 to the x above. */
printf("x is %d.¥n", x); /* Here "x is 3." */
return O;

}
N J

Swap function

e Swapping contents of two variables N
void swap(int a, int b){
int c;
c=a;00 a=>b; 000 b =c;
}
int main(void){
int x=3, y=7;
swap (x,y) ; /* Swaps values of x and y. */
C J

@ But x and y never change above code.
(Values of x,y copy to above function but these are never changed.)

- 0O If we know the pointer of this variable, these can be changed.

— [0 We use pointers of x and y !

Swap function

e Swapping contents of two variables N
void swap(int a, int b){
int c;
c=a;00 a=>b; 000 b =c;
}
int main(void){
int x=3, y=7;
swap (x,y) ; /* Swaps values of x and y. */
C J

@ But x and y never change above code.
(Values of x,y copy to above function but these are never changed.)

- 0O If we know the pointer of this variable, these can be changed.

— [0 We use pointers of x and y !

@ Use operators ampersand “&" and asterisk “*".
(We already use “&" in the scanf function.)

Ampersand &

The operator ampersand (&) returns an address of a variable.

&name_of_variable

int a=50;
printf("a=%d, hex=Jx, address=Jp ¥n",a ,a, &a);

o "%x" is called the hexadecimal conversion specification.
e "Jp" is called the pointer conversion specification.
@ Prints the address of a.

Address Contents
0x1234abc0 0x32 Allocated to
(Address of a) | (Value of a) int a
0x1234abc4 e

&a : Pointer to variable a (address of a)

Pointers (address variables)

A pointer contains an address of a variable.

Type *name_of_variable

int *p, a=50;
p = &a;

@ Type is the same as the type of variables to which a pointer points.

Address Contents
0x1234abc0 0x32 Allocated to
(Address of a) (Value of a) int a
0x1234abc4 0x1234abc0 Allocated to
(Address of a) int *p
0x1234abc8 e
P . Pointer to an integer (may be a)

p=&a : Assign the address of a to the pointer p

Pointers

@ Define several pointers by the following:
int *p, *q;
@ Type of void indicates a generic pointer.
(a pointer that can point to any type of variables)

void *p;

@ When a pointer points to nothing, it is called a NULL pointer.

int *p=0;
if (p==NULL) ...;

Asterisk *

@ The operator asterisk (*) returns the object to which a pointer points.
(ex. the expression *p indicates the variable a.)

@ You can read or assign a value of variable by using pointers.

Address Contents
0x1234abc0 0x32 Allocated to
(Address of a) (Value of a) int a
0x1234abc4 0x1234abc0 Allocated to
(Address of a) int *p
0x1234abc8 cee
int a; /* Define a variable "a" x*/
int *p; /% Define a pointer */

p = &a; /* Point to "a" (assign the address of "a") */
xp = 3; /* Set "a" to 3 (indicates a=3;) */

Exercise 1

Confirm a result of this program.

#include<stdio.h>

int main(void){
int a=5,b=10;
int *p;
p=&a;
printf("a=%d, b=ld, *p

#d¥n",a,b,*p);

*p=b;
printf ("a=%d, b=%d, *p = %d¥n",a,b,*p);
return O;

@ Name of this program should be pointer.c.

Exercise 1

Confirm a result of this program.

int main(void){
int a=5,b=10;
int *p;
p=&a;
printf("a=%d, b=%d, *p

»d¥n",a,b,*p) ;

*p=b;
printf ("a=%d, b=)d, *p

%d¥n",a,b,*p) ;
}

Outputs:
a=>, b=10, *p=

Exercise 1

Confirm a result of this program.

int main(void){
int a=5,b=10;
int *p;
p=&a;
printf("a=%d, b=%d, *p

»d¥n",a,b,*p) ;

*p=b;
printf ("a=%d, b=)d, *p

5»d¥n" ,a,b,*p) ;
}

Outputs:
a=5, b=10, *p=
a=' 0, b=10, *p=

Exercise 1

Confirm a result of this program.

int main(void){
int a=5,b=10;
int *p;
p=&a;
printf("a=%d, b=%d, *p

»d¥n",a,b,*p) ;

*p=b;
printf ("a=%d, b=)d, *p

hd¥n" ,a,b,*p) ;
}

Outputs:
a=5, b=10, *p=5
a=' 0, b=10, *p=

Exercise 1

Confirm a result of this program.

int main(void){
int a=5,b=10;
int *p;
p=&a;
printf("a=%d, b=%d, *p

»d¥n",a,b,*p) ;

*p=b;
printf ("a=%d, b=)d, *p

hd¥n" ,a,b,*p) ;
}

Outputs:
a=5, b=10, *p=5
a=10, b=10, *p=10

Swap function

e Swapping contents of two variables

void swap(int a, int Db){
int c;
c= a;00 a=»b; 000 b=c;
}
int main(void){
int x=3, y=7;
swap(x, y);
\¥}
Address | Contents
X (&x) 3 Note:
y (&y) Il int a;
int *p;
a p = &a;
b *p = 3;
c

/%
/%
/%
/*

Define a variable "a" */
Define a pointer */
Point to "a" */

Set "a" to 3 */

Swap function

e Swapping contents of two variables

void swap(int *a, int *Db){ /* Get addresses of two variables */
int c;
c = *a; J0*a =xb; DO0O*b = c;
}
int main(void){
int x=3, y=7;
swap (&x,&y) ; /* Assign addresses as parameters */
}

Address | Contents

X (&x) 3 Note:

y (&y) 7 int a; /* Define a variable "a" */
int *p; /* Define a pointer */

a p = &a; /* Point to "a" */

b *p = 3; /* Set "a" to 3 */

Swap function

e Swapping contents of two variables

void swap(int *a, int *Db){ /* Get addresses of two variables */
int c;
c = *a; J0*a =xb; DO0O*b = c;
}
int main(void){
int x=3, y=7;
swap (&x,&y) ; /* Assign addresses as parameters */
}

Address | Contents
X (&x) 3 Note:
y (&y) 7 int a; /* Define a variable "a" */
int *p; /* Define a pointer */
a &x p = &a; /* Point to "a" */
b &y *p = 3; /* Set "a" to 3 */
c

Swap function

e Swapping contents of two variables

void swap(int *a, int *Db){ /* Get addresses of two variables */
int c;
c = *a; J0*a =xb; DO0O*b = c;
}
int main(void){
int x=3, y=7;
swap (&x,&y) ; /* Assign addresses as parameters */
}

Address | Contents
X (&x) 3 Note:
y (&y) 7 int a; /* Define a variable "a" */
int *p; /* Define a pointer */
a &x p = &a; /* Point to "a" */
b &y *p = 3; /* Set "a" to 3 */
[3

Swap function

e Swapping contents of two variables

void swap(int *a, int *Db){ /* Get addresses of two variables */
int c;
c = *a; J0*a =xb; DO0O*b = c;
}
int main(void){
int x=3, y=7;
swap (&x,&y) ; /* Assign addresses as parameters */
}

Address | Contents
X (&x) 3-7 Note:
y (&y) 7 int a; /* Define a variable "a" */
int *p; /* Define a pointer */
a &x p = &a; /* Point to "a" */
b &y *p = 3; /* Set "a" to 3 */
[3

Swap function

e Swapping contents of two variables

void swap(int *a, int *Db){ /* Get addresses of two variables */
int c;
c = *a; J0*a =xb; DO0O*b = c;
}
int main(void){
int x=3, y=7;
swap (&x,&y) ; /* Assign addresses as parameters */
}

Address | Contents
X (&x) 3-7 Note:
y (&y) 7-3 int a; /* Define a variable "a" */
int *p; /* Define a pointer */
a &x p = &a; /* Point to "a" */
b &y *p = 3; /* Set "a" to 3 */
[3

Exercise 2

Create a function “order” whose parameters are two pointers of integer.
This function sorts two parameters in ascending order (use swap function).

@ Name should be order.c.
@ In the main function set x = 7,y = 3 and print addresses and values.
o Call the oder function (by order(&x,&y);) such that = < y.
@ Print addresses and values of x and y, respectively.
@ Output will be the followings:
x: address = Oxbffff944, value = 7,
y: address = Oxbffff940, value = 3,
x: address = Oxbffff944, value = 3,
y: address = Oxbffff940, value = 7,

Pointers and arrays

@ The elements of an array are
assigned to consecutive
addresses (ex. int A[3]).

@ The variable A is used as a
pointer that points to A[0].

e *A indicates A[0].

@ The pointer can be used to find
each element of the array (ex.
*(A+1) indicates A[1]).

@ The address of A[i] is given by
& (ex. &A[i]).

Address Contents | Example
0x00000001 0x32
0x00000002 Ox4a A[0]
0x00000003 0x2f
0x00000004 Oxaf
0x00000005 Oxd4
0x00000006 0x29 Al1]
0x00000007 0x82
0x00000008 Oxcc
0x00000009 0x3d
0x0000000a 0x10 Al2]
0x0000000b 0x04
0x0000000c 0x27

Pointers and arrays

@ The elements of an array are
assigned to consecutive
addresses (ex. int A[3]).

@ The variable A is used as a
pointer that points to A[0].

e *A indicates A[0].

@ The pointer can be used to find
each element of the array (ex.
*(A+1) indicates A[1]).

@ The address of A[i] is given by
& (ex. &A[i]).

Address Contents | Example
0x00000001 0x32
0x00000002 Ox4a A[0]
0x00000003 0x2f
0x00000004 Oxaf
0x00000005 Oxd4
0x00000006 0x29 Al1]
0x00000007 0x82
0x00000008 Oxcc
0x00000009 0x3d
0x0000000a 0x10 Al2]
0x0000000b 0x04
0x0000000c 0x27

Arrays as parameters

When we want to assign an array to parameters of a function, the pointer
of the array is necessary.

e Set 0 in all elements of array

~
void setZero(int *a, int size){
int i;
for(i=0; i<size; i++)
al[il=0;
}
int main(void){
int A[10];
setZero(A,10); /* Not &A */
\

Summary

@ What is pointer?

int a; /* Define a variable "a" */
int *p; /* Define a pointer */

p = &a; /* Point to "a" */

p = 3; / Set "a" to 3 */

@ Assign pointers to parameters.

Change value of a

int a;
scanf ("%d",&a); /* scanf("/d",a); is not working. */

@ Pointers and arrays

